File size: 1,895 Bytes
221fa9d
e5253e2
 
 
 
 
 
 
a64b4bc
e5253e2
 
 
 
 
a64b4bc
e5253e2
 
 
 
 
 
 
a64b4bc
e5253e2
a64b4bc
221fa9d
 
e5253e2
 
221fa9d
e5253e2
221fa9d
e5253e2
 
 
 
221fa9d
e5253e2
221fa9d
e5253e2
221fa9d
e5253e2
221fa9d
e5253e2
221fa9d
e5253e2
221fa9d
e5253e2
221fa9d
e5253e2
221fa9d
e5253e2
221fa9d
e5253e2
 
 
 
 
 
 
 
 
 
 
 
221fa9d
e5253e2
221fa9d
e5253e2
 
 
 
221fa9d
 
e5253e2
221fa9d
e5253e2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: mit
tags:
- generated_from_trainer
datasets:
- common_voice_16_0
metrics:
- wer
base_model: facebook/w2v-bert-2.0
model-index:
- name: w2v-bert-2.0-malayalam-CV16.0
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: common_voice_16_0
      type: common_voice_16_0
      config: ml
      split: test
      args: ml
    metrics:
    - type: wer
      value: 0.5442294402211472
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v-bert-2.0-malayalam-CV16.0

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4511
- Wer: 0.5442

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.644         | 4.88  | 300  | 0.5119          | 0.6572 |
| 0.223         | 9.76  | 600  | 0.4511          | 0.5442 |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.1+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1