--- license: mit tags: - generated_from_trainer metrics: - wer base_model: facebook/w2v-bert-2.0 model-index: - name: w2v-bert-2.0-malayalam_mixeddataset_thre results: [] --- # w2v-bert-2.0-malayalam_mixeddataset_thre This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1709 - Wer: 0.1197 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.1907 | 0.47 | 600 | 0.3890 | 0.4765 | | 0.1663 | 0.95 | 1200 | 0.2528 | 0.3528 | | 0.1207 | 1.42 | 1800 | 0.2176 | 0.2849 | | 0.1017 | 1.9 | 2400 | 0.2021 | 0.2625 | | 0.0833 | 2.37 | 3000 | 0.2032 | 0.2456 | | 0.076 | 2.85 | 3600 | 0.1880 | 0.2376 | | 0.0625 | 3.32 | 4200 | 0.1946 | 0.2247 | | 0.0552 | 3.8 | 4800 | 0.1701 | 0.2247 | | 0.0441 | 4.27 | 5400 | 0.1627 | 0.1759 | | 0.0392 | 4.74 | 6000 | 0.1629 | 0.1829 | | 0.0362 | 5.22 | 6600 | 0.1723 | 0.1605 | | 0.0278 | 5.69 | 7200 | 0.1600 | 0.1665 | | 0.0248 | 6.17 | 7800 | 0.1557 | 0.1446 | | 0.0197 | 6.64 | 8400 | 0.1524 | 0.1505 | | 0.0176 | 7.12 | 9000 | 0.1580 | 0.1339 | | 0.0129 | 7.59 | 9600 | 0.1528 | 0.1411 | | 0.0125 | 8.07 | 10200 | 0.1502 | 0.1299 | | 0.0076 | 8.54 | 10800 | 0.1711 | 0.1189 | | 0.0076 | 9.02 | 11400 | 0.1689 | 0.1237 | | 0.0041 | 9.49 | 12000 | 0.1708 | 0.1227 | | 0.0041 | 9.96 | 12600 | 0.1709 | 0.1197 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.1+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1