--- license: mit tags: - generated_from_trainer metrics: - wer base_model: facebook/w2v-bert-2.0 model-index: - name: w2v-bert-2.0-malayalam_mixeddataset_thre results: [] --- # w2v-bert-2.0-malayalam_mixeddataset_thre This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1738 - Wer: 0.1162 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.1027 | 0.47 | 600 | 0.3414 | 0.4257 | | 0.1646 | 0.95 | 1200 | 0.2676 | 0.3585 | | 0.1197 | 1.42 | 1800 | 0.2197 | 0.2988 | | 0.1028 | 1.9 | 2400 | 0.2114 | 0.2849 | | 0.0809 | 2.37 | 3000 | 0.1947 | 0.2478 | | 0.0738 | 2.85 | 3600 | 0.1593 | 0.2411 | | 0.0615 | 3.32 | 4200 | 0.1657 | 0.2075 | | 0.0528 | 3.8 | 4800 | 0.1587 | 0.1986 | | 0.0425 | 4.27 | 5400 | 0.1687 | 0.1749 | | 0.0377 | 4.74 | 6000 | 0.1566 | 0.1796 | | 0.0336 | 5.22 | 6600 | 0.1628 | 0.1647 | | 0.0269 | 5.69 | 7200 | 0.1580 | 0.1754 | | 0.0237 | 6.17 | 7800 | 0.1564 | 0.1530 | | 0.0189 | 6.64 | 8400 | 0.1593 | 0.1446 | | 0.0159 | 7.12 | 9000 | 0.1370 | 0.1376 | | 0.0118 | 7.59 | 9600 | 0.1586 | 0.1421 | | 0.012 | 8.07 | 10200 | 0.1567 | 0.1281 | | 0.0071 | 8.54 | 10800 | 0.1645 | 0.1227 | | 0.0072 | 9.02 | 11400 | 0.1634 | 0.1202 | | 0.0036 | 9.49 | 12000 | 0.1719 | 0.1189 | | 0.0036 | 9.96 | 12600 | 0.1738 | 0.1162 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.1+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1