File size: 3,285 Bytes
ce60822
8134751
 
 
a053dcb
 
8134751
 
a053dcb
 
8134751
 
 
 
 
a053dcb
8134751
 
 
 
 
 
 
a053dcb
8134751
a053dcb
ce60822
 
8134751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
base_model: facebook/w2v-bert-2.0
datasets:
- common_voice_17_0
library_name: transformers
license: mit
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: w2v-bert-2_6_datasets
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: common_voice_17_0
      type: common_voice_17_0
      config: ml
      split: validation
      args: ml
    metrics:
    - type: wer
      value: 0.43922053819981444
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v-bert-2_6_datasets

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5077
- Wer: 0.4392

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Wer    |
|:-------------:|:------:|:-----:|:---------------:|:------:|
| 1.1114        | 0.4038 | 600   | 0.6364          | 0.6514 |
| 0.1782        | 0.8075 | 1200  | 0.5620          | 0.6127 |
| 0.1374        | 1.2113 | 1800  | 0.4943          | 0.5654 |
| 0.1156        | 1.6151 | 2400  | 0.4415          | 0.5376 |
| 0.1068        | 2.0188 | 3000  | 0.4187          | 0.5249 |
| 0.0838        | 2.4226 | 3600  | 0.4778          | 0.5320 |
| 0.0834        | 2.8264 | 4200  | 0.4186          | 0.5091 |
| 0.0703        | 3.2301 | 4800  | 0.4538          | 0.5363 |
| 0.0636        | 3.6339 | 5400  | 0.4287          | 0.5314 |
| 0.0609        | 4.0377 | 6000  | 0.4013          | 0.4989 |
| 0.0462        | 4.4415 | 6600  | 0.4053          | 0.4964 |
| 0.047         | 4.8452 | 7200  | 0.4289          | 0.4766 |
| 0.0377        | 5.2490 | 7800  | 0.3875          | 0.4933 |
| 0.0352        | 5.6528 | 8400  | 0.3906          | 0.4881 |
| 0.033         | 6.0565 | 9000  | 0.4192          | 0.4667 |
| 0.0243        | 6.4603 | 9600  | 0.4113          | 0.4723 |
| 0.0244        | 6.8641 | 10200 | 0.4393          | 0.4708 |
| 0.0189        | 7.2678 | 10800 | 0.4255          | 0.4630 |
| 0.0167        | 7.6716 | 11400 | 0.4219          | 0.4646 |
| 0.0157        | 8.0754 | 12000 | 0.4398          | 0.4429 |
| 0.0107        | 8.4791 | 12600 | 0.4546          | 0.4507 |
| 0.0095        | 8.8829 | 13200 | 0.4949          | 0.4426 |
| 0.0072        | 9.2867 | 13800 | 0.4972          | 0.4473 |
| 0.0059        | 9.6904 | 14400 | 0.5077          | 0.4392 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1