--- base_model: facebook/w2v-bert-2.0 datasets: - common_voice_17_0 library_name: transformers license: mit metrics: - wer tags: - generated_from_trainer model-index: - name: w2v-bert-2_6_datasets results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: ml split: validation args: ml metrics: - type: wer value: 0.43922053819981444 name: Wer --- # w2v-bert-2_6_datasets This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5077 - Wer: 0.4392 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 1.1114 | 0.4038 | 600 | 0.6364 | 0.6514 | | 0.1782 | 0.8075 | 1200 | 0.5620 | 0.6127 | | 0.1374 | 1.2113 | 1800 | 0.4943 | 0.5654 | | 0.1156 | 1.6151 | 2400 | 0.4415 | 0.5376 | | 0.1068 | 2.0188 | 3000 | 0.4187 | 0.5249 | | 0.0838 | 2.4226 | 3600 | 0.4778 | 0.5320 | | 0.0834 | 2.8264 | 4200 | 0.4186 | 0.5091 | | 0.0703 | 3.2301 | 4800 | 0.4538 | 0.5363 | | 0.0636 | 3.6339 | 5400 | 0.4287 | 0.5314 | | 0.0609 | 4.0377 | 6000 | 0.4013 | 0.4989 | | 0.0462 | 4.4415 | 6600 | 0.4053 | 0.4964 | | 0.047 | 4.8452 | 7200 | 0.4289 | 0.4766 | | 0.0377 | 5.2490 | 7800 | 0.3875 | 0.4933 | | 0.0352 | 5.6528 | 8400 | 0.3906 | 0.4881 | | 0.033 | 6.0565 | 9000 | 0.4192 | 0.4667 | | 0.0243 | 6.4603 | 9600 | 0.4113 | 0.4723 | | 0.0244 | 6.8641 | 10200 | 0.4393 | 0.4708 | | 0.0189 | 7.2678 | 10800 | 0.4255 | 0.4630 | | 0.0167 | 7.6716 | 11400 | 0.4219 | 0.4646 | | 0.0157 | 8.0754 | 12000 | 0.4398 | 0.4429 | | 0.0107 | 8.4791 | 12600 | 0.4546 | 0.4507 | | 0.0095 | 8.8829 | 13200 | 0.4949 | 0.4426 | | 0.0072 | 9.2867 | 13800 | 0.4972 | 0.4473 | | 0.0059 | 9.6904 | 14400 | 0.5077 | 0.4392 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1