--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-medium-studio-records_test results: [] --- # whisper-medium-studio-records_test This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0333 - Wer: 15.6507 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 6000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0568 | 0.4110 | 1000 | 0.0894 | 43.3939 | | 0.0362 | 0.8220 | 2000 | 0.0589 | 29.9079 | | 0.0149 | 1.2330 | 3000 | 0.0463 | 22.6922 | | 0.0117 | 1.6441 | 4000 | 0.0375 | 19.2088 | | 0.0039 | 2.0551 | 5000 | 0.0355 | 16.1483 | | 0.0032 | 2.4661 | 6000 | 0.0333 | 15.6507 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1