Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
# Load your fine-tuned zero-shot model
|
6 |
+
classifier = pipeline("zero-shot-classification", model="Balajim57/zero-shot-vitb32")
|
7 |
+
|
8 |
+
def predict(image, prompt1, prompt2, prompt3):
|
9 |
+
# Perform zero-shot classification on the uploaded image with provided prompts
|
10 |
+
results = classifier(image, [prompt1, prompt2, prompt3])
|
11 |
+
return results["labels"]
|
12 |
+
|
13 |
+
# Streamlit UI components
|
14 |
+
st.title("Zero-Shot Image Classification")
|
15 |
+
uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
16 |
+
prompt1 = st.text_input("Prompt 1")
|
17 |
+
prompt2 = st.text_input("Prompt 2")
|
18 |
+
prompt3 = st.text_input("Prompt 3")
|
19 |
+
if uploaded_image:
|
20 |
+
image = Image.open(uploaded_image)
|
21 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
22 |
+
if st.button("Classify"):
|
23 |
+
results = predict(image, prompt1, prompt2, prompt3)
|
24 |
+
st.write("Classification Results:")
|
25 |
+
st.write(results)
|