Baljinnyam commited on
Commit
2c36d8d
1 Parent(s): ed5a424

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - mn
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: mongolian-gpt2-ner-finetuning
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # mongolian-gpt2-ner-finetuning
20
+
21
+ This model is a fine-tuned version of [bayartsogt/mongolian-gpt2](https://huggingface.co/bayartsogt/mongolian-gpt2) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.3230
24
+ - Precision: 0.0989
25
+ - Recall: 0.2277
26
+ - F1: 0.1380
27
+ - Accuracy: 0.9078
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 32
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 10
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.5225 | 1.0 | 477 | 0.3650 | 0.0743 | 0.1674 | 0.1030 | 0.8821 |
59
+ | 0.322 | 2.0 | 954 | 0.3129 | 0.0853 | 0.1903 | 0.1178 | 0.8966 |
60
+ | 0.2681 | 3.0 | 1431 | 0.3008 | 0.0915 | 0.2034 | 0.1262 | 0.9022 |
61
+ | 0.232 | 4.0 | 1908 | 0.2963 | 0.0914 | 0.2070 | 0.1269 | 0.9053 |
62
+ | 0.2029 | 5.0 | 2385 | 0.2974 | 0.0933 | 0.2120 | 0.1295 | 0.9071 |
63
+ | 0.1791 | 6.0 | 2862 | 0.3038 | 0.0949 | 0.2140 | 0.1315 | 0.9076 |
64
+ | 0.1603 | 7.0 | 3339 | 0.3100 | 0.0958 | 0.2186 | 0.1332 | 0.9079 |
65
+ | 0.146 | 8.0 | 3816 | 0.3174 | 0.0950 | 0.2156 | 0.1319 | 0.9079 |
66
+ | 0.1355 | 9.0 | 4293 | 0.3233 | 0.1001 | 0.2274 | 0.1390 | 0.9080 |
67
+ | 0.1291 | 10.0 | 4770 | 0.3230 | 0.0989 | 0.2277 | 0.1380 | 0.9078 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.28.1
73
+ - Pytorch 2.0.0+cu118
74
+ - Datasets 2.12.0
75
+ - Tokenizers 0.13.3