--- language: - mn tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-base-ner-hrl-ner-finetuning results: [] --- # xlm-roberta-base-ner-hrl-ner-finetuning This model is a fine-tuned version of [Davlan/xlm-roberta-base-ner-hrl](https://huggingface.co/Davlan/xlm-roberta-base-ner-hrl) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1135 - Precision: 0.9290 - Recall: 0.9367 - F1: 0.9328 - Accuracy: 0.9801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1534 | 1.0 | 477 | 0.0870 | 0.9001 | 0.9124 | 0.9062 | 0.9740 | | 0.077 | 2.0 | 954 | 0.0764 | 0.9187 | 0.9321 | 0.9253 | 0.9789 | | 0.0529 | 3.0 | 1431 | 0.0845 | 0.9178 | 0.9313 | 0.9245 | 0.9791 | | 0.0377 | 4.0 | 1908 | 0.0805 | 0.9200 | 0.9310 | 0.9255 | 0.9795 | | 0.0292 | 5.0 | 2385 | 0.0918 | 0.9278 | 0.9346 | 0.9312 | 0.9795 | | 0.0204 | 6.0 | 2862 | 0.1016 | 0.9222 | 0.9323 | 0.9273 | 0.9790 | | 0.0167 | 7.0 | 3339 | 0.1066 | 0.9271 | 0.9327 | 0.9299 | 0.9790 | | 0.0134 | 8.0 | 3816 | 0.1088 | 0.9253 | 0.9358 | 0.9305 | 0.9797 | | 0.0101 | 9.0 | 4293 | 0.1134 | 0.9289 | 0.9357 | 0.9323 | 0.9798 | | 0.0079 | 10.0 | 4770 | 0.1135 | 0.9290 | 0.9367 | 0.9328 | 0.9801 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3