--- base_model: mistralai/Mistral-7B-v0.1 library_name: peft license: apache-2.0 metrics: - accuracy tags: - generated_from_trainer model-index: - name: ncis results: [] --- # ncis This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1321 - Accuracy: 0.9596 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5872 | 1.0 | 37 | 0.3532 | 0.8535 | | 0.3902 | 2.0 | 74 | 0.2625 | 0.8737 | | 0.169 | 3.0 | 111 | 0.1820 | 0.9495 | | 0.1978 | 4.0 | 148 | 0.1502 | 0.9596 | | 0.1401 | 5.0 | 185 | 0.1321 | 0.9596 | | 0.0175 | 6.0 | 222 | 0.2037 | 0.9394 | | 0.0101 | 7.0 | 259 | 0.1677 | 0.9495 | | 0.0001 | 8.0 | 296 | 0.1633 | 0.9545 | ### Framework versions - PEFT 0.12.0 - Transformers 4.43.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1