File size: 2,114 Bytes
ae179da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
BDQ:
  batch_size: 64
  buffer_size: 1000000
  epsilon_greedy: true
  exploration_final_eps: 0.1
  exploration_fraction: 0.3
  layers:
  - [64, 64]
  - [32]
  - [32]
  learning_rate: 0.0001
  learning_starts: 1000
  num_actions_pad: 33
  prioritized_replay: false
  save_dir: BDQ1mSimplified
  target_network_update_freq: 1000
  tensorboard_logs: null
  total_timesteps: 4000000
DDPG: {save_dir: DDPG, tensorboard_logs: DDPG, total_timesteps: 2000000}
DQN: {batch_size: 32, learning_rate: 0.001, prioritized_replay: true, save_dir: DQN4mFull,
  tensorboard_logs: null, total_timesteps: 4000000}
PPO: {learning_rate: 0.001, n_steps: 2000, save_dir: ppo_5m, tensorboard_logs: tensorboard_logs/ppo_5m,
  total_timesteps: 1000000}
SAC:
  batch_size: 64
  buffer_size: 1000000
  layers: [64, 64]
  max_iters: 400
  save_dir: SAC_10m_table
  step_size: 0.0003
  tensorboard_logs: null
  total_timesteps: 10000000
TRPO: {batch_size: 64, max_iters: 400, save_dir: trpo_1m, step_size: 0.001, tensorboard_logs: tensorboard_logs/trpo_1m,
  total_timesteps: 5000000}
algorithm: sac
curriculum:
  extent: [0.01, 0.1]
  init_lambda: 0.0
  lift_dist: [0.015, 0.1]
  max_objects: [1, 5]
  min_objects: [1, 1]
  n_steps: 8
  robot_height: [0.15, 0.25]
  success_threshold: 0.7
  window_size: 1000
depth_observation: true
discount_factor: 0.99
full_observation: false
normalize: true
reward: {custom: true, delta_z_scale: 1000.0, grasp_reward: 100.0, shaped: true, terminal_reward: 10000.0,
  time_penalty: 200.0}
robot: {discrete: false, max_force: 100, max_translation: 0.03, max_yaw_rotation: 0.15,
  model_path: models/gripper/wsg50_one_motor_gripper_new.sdf, num_actions_pad: 2,
  step_size: 0.01, yaw_step: 0.1}
scene: {data_set: random_urdfs, scene_type: OnTable}
sensor:
  camera_info: config/camera_info.yaml
  encoder_dir: encoder_files/new_gripper_encoder
  randomize: {focal_length: 4, optical_center: 2, rotation: 0.0349, translation: 0.002}
  transform: config/camera_transform.yaml
  visualize: false
simplified: false
simulation: {real_time: false, visualize: false}
skip_empty_initial_state: true
time_horizon: 200