BDQ: batch_size: 64 buffer_size: 1000000 epsilon_greedy: true exploration_final_eps: 0.1 exploration_fraction: 0.3 layers: - [64, 64] - [32] - [32] learning_rate: 0.0001 learning_starts: 1000 num_actions_pad: 33 prioritized_replay: false save_dir: BDQ1mSimplified target_network_update_freq: 1000 tensorboard_logs: null total_timesteps: 4000000 DDPG: {save_dir: DDPG, tensorboard_logs: DDPG, total_timesteps: 2000000} DQN: {batch_size: 32, learning_rate: 0.001, prioritized_replay: true, save_dir: DQN4mFull, tensorboard_logs: null, total_timesteps: 4000000} PPO: {learning_rate: 0.001, n_steps: 2000, save_dir: ppo_5m, tensorboard_logs: tensorboard_logs/ppo_5m, total_timesteps: 1000000} SAC: batch_size: 64 buffer_size: 1000000 layers: [64, 64] max_iters: 400 save_dir: SAC_10m_table step_size: 0.0003 tensorboard_logs: null total_timesteps: 10000000 TRPO: {batch_size: 64, max_iters: 400, save_dir: trpo_1m, step_size: 0.001, tensorboard_logs: tensorboard_logs/trpo_1m, total_timesteps: 5000000} algorithm: sac curriculum: extent: [0.01, 0.1] init_lambda: 0.0 lift_dist: [0.015, 0.1] max_objects: [1, 5] min_objects: [1, 1] n_steps: 8 robot_height: [0.15, 0.25] success_threshold: 0.7 window_size: 1000 depth_observation: true discount_factor: 0.99 full_observation: false normalize: true reward: {custom: true, delta_z_scale: 1000.0, grasp_reward: 100.0, shaped: true, terminal_reward: 10000.0, time_penalty: 200.0, table_clearing: True} robot: {discrete: false, max_force: 100, max_translation: 0.05, max_yaw_rotation: 0.20, model_path: models/gripper/wsg50_one_motor_gripper_new.sdf, num_actions_pad: 2, step_size: 0.01, yaw_step: 0.1} scene: {data_set: random_urdfs, scene_type: OnTable} sensor: camera_info: config/camera_info.yaml encoder_dir: encoder_files/new_gripper_encoder randomize: {focal_length: 4, optical_center: 2, rotation: 0.0349, translation: 0.002} transform: config/camera_transform.yaml visualize: false simplified: false simulation: {real_time: false, visualize: false} skip_empty_initial_state: true time_horizon: 200