highest reward model
Browse files- README.md +3 -3
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -24,7 +24,7 @@ You can then generate text as follows:
|
|
24 |
```python
|
25 |
from transformers import pipeline
|
26 |
|
27 |
-
generator = pipeline("text-generation", model="Bearnardd//tmp/
|
28 |
outputs = generator("Hello, my llama is cute")
|
29 |
```
|
30 |
|
@@ -34,8 +34,8 @@ If you want to use the model for training or to obtain the outputs from the valu
|
|
34 |
from transformers import AutoTokenizer
|
35 |
from trl import AutoModelForCausalLMWithValueHead
|
36 |
|
37 |
-
tokenizer = AutoTokenizer.from_pretrained("Bearnardd//tmp/
|
38 |
-
model = AutoModelForCausalLMWithValueHead.from_pretrained("Bearnardd//tmp/
|
39 |
|
40 |
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
|
41 |
outputs = model(**inputs, labels=inputs["input_ids"])
|
|
|
24 |
```python
|
25 |
from transformers import pipeline
|
26 |
|
27 |
+
generator = pipeline("text-generation", model="Bearnardd//tmp/tmpdn3fa8xo/Bearnardd/gpt2-imdb")
|
28 |
outputs = generator("Hello, my llama is cute")
|
29 |
```
|
30 |
|
|
|
34 |
from transformers import AutoTokenizer
|
35 |
from trl import AutoModelForCausalLMWithValueHead
|
36 |
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained("Bearnardd//tmp/tmpdn3fa8xo/Bearnardd/gpt2-imdb")
|
38 |
+
model = AutoModelForCausalLMWithValueHead.from_pretrained("Bearnardd//tmp/tmpdn3fa8xo/Bearnardd/gpt2-imdb")
|
39 |
|
40 |
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
|
41 |
outputs = model(**inputs, labels=inputs["input_ids"])
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 510399237
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f72e81c1cfd144579c71a04b48a5729db5ebc1b4866e07e32d0106ad5de889d6
|
3 |
size 510399237
|