Berketarak commited on
Commit
864179e
1 Parent(s): 41143b7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -145
README.md CHANGED
@@ -5,7 +5,7 @@ tags: []
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
11
 
@@ -15,23 +15,12 @@ tags: []
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
@@ -39,161 +28,67 @@ This is the model card of a 🤗 transformers model that has been pushed on the
39
 
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
  [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
67
 
68
  Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
 
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
 
 
 
112
 
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
 
121
- #### Metrics
 
 
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
 
131
- #### Summary
 
132
 
 
 
133
 
 
 
 
 
 
 
134
 
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
5
 
6
  # Model Card for Model ID
7
 
8
+ This model is designed to identify whether two product titles (including specifications) describe the same product. The model generates a score, where a score greater than 0.5 indicates that the products are likely the same.The treshold value can be used as needed. It is based on the BERT base uncased architecture and has been fine-tuned on a custom dataset derived from real-world examples. The model performs particularly well on longer sequences.
9
 
10
 
11
 
 
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
 
18
 
19
+ - **Model type:** Binary Classification
20
+ - **Language(s) (NLP):** English
21
+ - **Finetuned from model [optional]:** bert-base-uncased
 
 
 
 
22
 
 
23
 
 
 
 
 
 
24
 
25
  ## Uses
26
 
 
28
 
29
  ### Direct Use
30
 
31
+ This model can be directly used to determine if two product titles are the same. It is especially useful in e-commerce applications for deduplication, catalog matching, and product comparison.
 
 
32
 
 
33
 
 
 
 
34
 
35
  ### Out-of-Scope Use
36
 
37
+ The model is not suitable for tasks requiring deep contextual understanding beyond product titles or for comparing product descriptions that lack specification details.
38
 
39
  [More Information Needed]
40
 
41
  ## Bias, Risks, and Limitations
42
 
43
+ - **Bias**: The model may inherit biases present in the dataset, particularly related to product categories with less representation.
44
+ - **Limitations**: The model is optimized for product titles and may perform poorly on short, ambiguous titles or non-standardized names.
 
45
 
46
  ### Recommendations
47
 
48
+ It is recommended to use this model for products with clearly defined titles and specifications. Users should also monitor performance on specific product categories to identify and address any biases.
49
+
50
 
51
  Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
52
 
53
  ## How to Get Started with the Model
54
 
55
+ ```python
56
+ import torch
57
+ from transformers import BertTokenizer
58
+ from huggingface_hub import hf_hub_download
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
+ # Step 1: Download model.py
61
+ file_path = hf_hub_download(repo_id='Berketarak/Product-Matching-Classifier', filename='model.py')
62
 
63
+ # Step 2: Add directory containing model.py to the Python path
64
+ import sys, os
65
+ model_dir = os.path.dirname(file_path)
66
+ sys.path.append(model_dir)
67
 
68
+ # Step 3: Import custom model class
69
+ from model import CustomBertModel
 
 
 
 
 
70
 
71
+ # Step 4: Load tokenizer and model
72
+ tokenizer = BertTokenizer.from_pretrained('Berketarak/Product-Matching-Classifier')
73
+ model = CustomBertModel.from_pretrained('Berketarak/Product-Matching-Classifier')
74
 
 
 
 
 
 
 
 
75
 
76
+ product1 = 'X brand Pegasus Sneakers'
77
+ product2 = 'Y brand Shoes'
78
 
79
+ # Tokenize the input
80
+ inputs = tokenizer(product1, product2, padding='max_length', truncation=True, max_length=350, return_tensors='pt')
81
 
82
+ # Inference
83
+ with torch.no_grad():
84
+ input_ids = inputs['input_ids'].to(device)
85
+ attention_mask = inputs['attention_mask'].to(device)
86
+ token_type_ids = inputs['token_type_ids'].to(device)
87
+ output = model(input_ids, attention_mask, token_type_ids).item()
88
 
89
+ # Interpret the output
90
+ if output > 0.5:
91
+ print(f"The products are likely the SAME. Model output: {output}")
92
+ else:
93
+ print(f"The products are likely DIFFERENT. Model output: {output}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94