--- language: - it license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper small it - m1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fleurs type: google/fleurs config: it_it split: None args: 'config: it_it, split: test, train' metrics: - name: Wer type: wer value: 8.1873331715603 --- # Whisper small it - m1 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.2185 - Wer: 8.1873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0744 | 2.6316 | 500 | 0.1838 | 10.7450 | | 0.006 | 5.2632 | 1000 | 0.2006 | 8.1145 | | 0.0022 | 7.8947 | 1500 | 0.2094 | 8.0951 | | 0.0017 | 10.5263 | 2000 | 0.2159 | 8.0466 | | 0.0014 | 13.1579 | 2500 | 0.2185 | 8.1873 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1