File size: 2,053 Bytes
6aaff02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
language:
- es
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- facebook/voxpopuli
metrics:
- wer
model-index:
- name: Whisper small es - m2
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: voxpopuli
      type: facebook/voxpopuli
      config: es
      split: None
      args: 'config: es, split: test, train'
    metrics:
    - name: Wer
      type: wer
      value: 10.901096153044639
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper small es - m2

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the voxpopuli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2611
- Wer: 10.9011

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.2532        | 0.1571 | 500  | 0.3079          | 11.9764 |
| 0.2254        | 0.3142 | 1000 | 0.2858          | 10.9469 |
| 0.2303        | 0.4713 | 1500 | 0.2729          | 11.0053 |
| 0.2213        | 0.6283 | 2000 | 0.2657          | 10.8511 |
| 0.2375        | 0.7854 | 2500 | 0.2611          | 10.9011 |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1