--- language: - es license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - facebook/voxpopuli metrics: - wer model-index: - name: Whisper small es - m2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: voxpopuli type: facebook/voxpopuli config: es split: None args: 'config: es, split: test, train' metrics: - name: Wer type: wer value: 10.901096153044639 --- # Whisper small es - m2 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.2611 - Wer: 10.9011 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2532 | 0.1571 | 500 | 0.3079 | 11.9764 | | 0.2254 | 0.3142 | 1000 | 0.2858 | 10.9469 | | 0.2303 | 0.4713 | 1500 | 0.2729 | 11.0053 | | 0.2213 | 0.6283 | 2000 | 0.2657 | 10.8511 | | 0.2375 | 0.7854 | 2500 | 0.2611 | 10.9011 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1