Bhanu9Prakash commited on
Commit
1abefe1
1 Parent(s): cef9156

First Push

Browse files
Files changed (3) hide show
  1. README.md +31 -0
  2. config.json +1 -0
  3. configuration.yaml +32 -0
README.md ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ tags:
4
+ - unity-ml-agents
5
+ - ml-agents
6
+ - deep-reinforcement-learning
7
+ - reinforcement-learning
8
+ - ML-Agents-SoccerTwos
9
+ library_name: ml-agents
10
+ ---
11
+
12
+ # **poca** Agent playing **SoccerTwos**
13
+ This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
14
+
15
+ ## Usage (with ML-Agents)
16
+ The Documentation: https://github.com/huggingface/ml-agents#get-started
17
+ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
18
+
19
+
20
+ ### Resume the training
21
+ ```
22
+ mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
23
+ ```
24
+ ### Watch your Agent play
25
+ You can watch your agent **playing directly in your browser:**.
26
+
27
+ 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
28
+ 2. Step 1: Write your model_id: Bhanu9Prakash/poca-SoccerTwos
29
+ 3. Step 2: Select your *.nn /*.onnx file
30
+ 4. Click on Watch the agent play 👀
31
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"behaviors": {"SoccerTwos": {"trainer_type": "poca", "hyperparameters": {"batch_size": 2048, "buffer_size": 20480, "learning_rate": 0.0003, "beta": 0.005, "epsilon": 0.2, "lambd": 0.95, "num_epoch": 3, "learning_rate_schedule": "constant"}, "network_settings": {"normalize": false, "hidden_units": 512, "num_layers": 2, "vis_encode_type": "simple"}, "reward_signals": {"extrinsic": {"gamma": 0.99, "strength": 1.0}}, "keep_checkpoints": 5, "max_steps": 5000000, "time_horizon": 1000, "summary_freq": 10000, "self_play": {"save_steps": 50000, "team_change": 200000, "swap_steps": 2000, "window": 10, "play_against_latest_model_ratio": 0.5, "initial_elo": 1200.0}}}}
configuration.yaml ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ behaviors:
2
+ SoccerTwos:
3
+ trainer_type: poca
4
+ hyperparameters:
5
+ batch_size: 2048
6
+ buffer_size: 20480
7
+ learning_rate: 0.0003
8
+ beta: 0.005
9
+ epsilon: 0.2
10
+ lambd: 0.95
11
+ num_epoch: 3
12
+ learning_rate_schedule: constant
13
+ network_settings:
14
+ normalize: false
15
+ hidden_units: 512
16
+ num_layers: 2
17
+ vis_encode_type: simple
18
+ reward_signals:
19
+ extrinsic:
20
+ gamma: 0.99
21
+ strength: 1.0
22
+ keep_checkpoints: 5
23
+ max_steps: 5000000
24
+ time_horizon: 1000
25
+ summary_freq: 10000
26
+ self_play:
27
+ save_steps: 50000
28
+ team_change: 200000
29
+ swap_steps: 2000
30
+ window: 10
31
+ play_against_latest_model_ratio: 0.5
32
+ initial_elo: 1200.0