Bhanu9Prakash
commited on
Commit
•
1abefe1
1
Parent(s):
cef9156
First Push
Browse files- README.md +31 -0
- config.json +1 -0
- configuration.yaml +32 -0
README.md
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
tags:
|
4 |
+
- unity-ml-agents
|
5 |
+
- ml-agents
|
6 |
+
- deep-reinforcement-learning
|
7 |
+
- reinforcement-learning
|
8 |
+
- ML-Agents-SoccerTwos
|
9 |
+
library_name: ml-agents
|
10 |
+
---
|
11 |
+
|
12 |
+
# **poca** Agent playing **SoccerTwos**
|
13 |
+
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
|
14 |
+
|
15 |
+
## Usage (with ML-Agents)
|
16 |
+
The Documentation: https://github.com/huggingface/ml-agents#get-started
|
17 |
+
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
|
18 |
+
|
19 |
+
|
20 |
+
### Resume the training
|
21 |
+
```
|
22 |
+
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
|
23 |
+
```
|
24 |
+
### Watch your Agent play
|
25 |
+
You can watch your agent **playing directly in your browser:**.
|
26 |
+
|
27 |
+
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
|
28 |
+
2. Step 1: Write your model_id: Bhanu9Prakash/poca-SoccerTwos
|
29 |
+
3. Step 2: Select your *.nn /*.onnx file
|
30 |
+
4. Click on Watch the agent play 👀
|
31 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"behaviors": {"SoccerTwos": {"trainer_type": "poca", "hyperparameters": {"batch_size": 2048, "buffer_size": 20480, "learning_rate": 0.0003, "beta": 0.005, "epsilon": 0.2, "lambd": 0.95, "num_epoch": 3, "learning_rate_schedule": "constant"}, "network_settings": {"normalize": false, "hidden_units": 512, "num_layers": 2, "vis_encode_type": "simple"}, "reward_signals": {"extrinsic": {"gamma": 0.99, "strength": 1.0}}, "keep_checkpoints": 5, "max_steps": 5000000, "time_horizon": 1000, "summary_freq": 10000, "self_play": {"save_steps": 50000, "team_change": 200000, "swap_steps": 2000, "window": 10, "play_against_latest_model_ratio": 0.5, "initial_elo": 1200.0}}}}
|
configuration.yaml
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
behaviors:
|
2 |
+
SoccerTwos:
|
3 |
+
trainer_type: poca
|
4 |
+
hyperparameters:
|
5 |
+
batch_size: 2048
|
6 |
+
buffer_size: 20480
|
7 |
+
learning_rate: 0.0003
|
8 |
+
beta: 0.005
|
9 |
+
epsilon: 0.2
|
10 |
+
lambd: 0.95
|
11 |
+
num_epoch: 3
|
12 |
+
learning_rate_schedule: constant
|
13 |
+
network_settings:
|
14 |
+
normalize: false
|
15 |
+
hidden_units: 512
|
16 |
+
num_layers: 2
|
17 |
+
vis_encode_type: simple
|
18 |
+
reward_signals:
|
19 |
+
extrinsic:
|
20 |
+
gamma: 0.99
|
21 |
+
strength: 1.0
|
22 |
+
keep_checkpoints: 5
|
23 |
+
max_steps: 5000000
|
24 |
+
time_horizon: 1000
|
25 |
+
summary_freq: 10000
|
26 |
+
self_play:
|
27 |
+
save_steps: 50000
|
28 |
+
team_change: 200000
|
29 |
+
swap_steps: 2000
|
30 |
+
window: 10
|
31 |
+
play_against_latest_model_ratio: 0.5
|
32 |
+
initial_elo: 1200.0
|