File size: 2,712 Bytes
2a48421 039b433 83344fe 039b433 83344fe 039b433 83344fe 039b433 83344fe 039b433 83344fe 039b433 1cd449b 039b433 54e0178 039b433 a95a7a2 039b433 83344fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: cc-by-nc-sa-4.0
language:
- ar
metrics:
- accuracy
pipeline_tag: text-generation
tags:
- medical
---
## Model Card for BiMediX-Bilingual
### Model Details
- **Name:** BiMediX
- **Version:** 1.0
- **Type:** Bilingual Medical Mixture of Experts Large Language Model (LLM)
- **Languages:** Arabic
- **Model Architecture:** [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
- **Training Data:** BiMed1.3M-Arabic, an arabic dataset with diverse medical interactions.
### Intended Use
- **Primary Use:** Medical interactions in both English and Arabic.
- **Capabilities:** MCQA, closed QA and chats.
## Getting Started
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "BiMediX/BiMediX-Ara"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
text = "مرحبًا بيميديكس! لقد كنت أعاني من التعب المتزايد في الأسبوع الماضي."
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=500)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
### Training Procedure
- **Dataset:** BiMed1.3M-Arabic.
- **QLoRA Adaptation:** Implements a low-rank adaptation technique, incorporating learnable low-rank adapter weights into the experts and the routing network. This results in training about 4% of the original parameters.
- **Training Resources:** The model underwent training on the Arabic corpus.
### Model Performance
| **Model** | **CKG** | **CBio** | **CMed** | **MedGen** | **ProMed** | **Ana** | **MedMCQA** | **MedQA** | **PubmedQA** | **AVG** |
|-----------|------------|-----------|-----------|-------------|-------------|---------|-------------|-----------|--------------|---------|
| Jais-30B | 52.1 | 50.7 | 40.5 | 49.0 | 39.3 | 43.0 | 37.0 | 28.8 | 74.6 | 46.1 |
| BiMediX (Arabic) | 60.0 | 54.9 | **55.5** | 58.0 | **58.1** | 49.6 | 46.0 | 40.2 | 76.6 | 55.4 |
| **BiMediX (Bilingual)** | **63.8** | **57.6** | 52.6 | **64.0** | 52.9 | **50.4** | **49.1** | **47.3** | **78.4** | **56.5** |
### Safety and Ethical Considerations
- **Potential issues**: hallucinations, toxicity, stereotypes.
- **Usage:** Research purposes only.
### Accessibility
- **Availability:** [BiMediX GitHub Repository](https://github.com/mbzuai-oryx/BiMediX).
- arxiv.org/abs/2402.13253
### Authors
Sara Pieri, Sahal Shaji Mullappilly, Fahad Shahbaz Khan, Rao Muhammad Anwer Salman Khan, Timothy Baldwin, Hisham Cholakkal
**Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI)** |