--- tags: - merge - mergekit - lazymergekit - BlackBeenie/Neos-Llama-3.1-8B - Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder - Solshine/reflection-llama-3.1-8B base_model: - BlackBeenie/Neos-Llama-3.1-8B - Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder - Solshine/reflection-llama-3.1-8B model-index: - name: Bloslain-8B-v0.2 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 50.23 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BlackBeenie/Bloslain-8B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 30.66 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BlackBeenie/Bloslain-8B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 14.5 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BlackBeenie/Bloslain-8B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 7.49 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BlackBeenie/Bloslain-8B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 10.45 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BlackBeenie/Bloslain-8B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 29.48 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BlackBeenie/Bloslain-8B-v0.2 name: Open LLM Leaderboard --- # Bloslain-8B-v0.2 Bloslain-8B-v0.2 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [BlackBeenie/Neos-Llama-3.1-8B](https://huggingface.co/BlackBeenie/Neos-Llama-3.1-8B) * [Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder](https://huggingface.co/Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder) * [Solshine/reflection-llama-3.1-8B](https://huggingface.co/Solshine/reflection-llama-3.1-8B) ## 🧩 Configuration ```yaml models: - model: NousResearch/Meta-Llama-3.1-8B-Instruct # No parameters necessary for base model - model: BlackBeenie/Neos-Llama-3.1-8B parameters: density: 0.53 weight: 0.4 - model: Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder parameters: density: 0.53 weight: 0.3 - model: Solshine/reflection-llama-3.1-8B parameters: density: 0.53 weight: 0.3 merge_method: dare_ties base_model: NousResearch/Meta-Llama-3.1-8B-Instruct parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "BlackBeenie/Bloslain-8B-v0.2" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_BlackBeenie__Bloslain-8B-v0.2) | Metric |Value| |-------------------|----:| |Avg. |23.80| |IFEval (0-Shot) |50.23| |BBH (3-Shot) |30.66| |MATH Lvl 5 (4-Shot)|14.50| |GPQA (0-shot) | 7.49| |MuSR (0-shot) |10.45| |MMLU-PRO (5-shot) |29.48|