Blgn94 commited on
Commit
c1d95e8
1 Parent(s): 40d506b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - mn
4
+ license: mit
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: mongolian-roberta-large-mnli-ner
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # mongolian-roberta-large-mnli-ner
21
+
22
+ This model is a fine-tuned version of [roberta-large-mnli](https://huggingface.co/roberta-large-mnli) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.1941
25
+ - Precision: 0.7734
26
+ - Recall: 0.8488
27
+ - F1: 0.8094
28
+ - Accuracy: 0.9582
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2e-05
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 32
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 10
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.3433 | 1.0 | 477 | 0.2252 | 0.6196 | 0.7338 | 0.6719 | 0.9288 |
60
+ | 0.2067 | 2.0 | 954 | 0.1859 | 0.6981 | 0.7908 | 0.7416 | 0.9381 |
61
+ | 0.165 | 3.0 | 1431 | 0.1776 | 0.7308 | 0.8112 | 0.7689 | 0.9455 |
62
+ | 0.1362 | 4.0 | 1908 | 0.1639 | 0.7513 | 0.8265 | 0.7871 | 0.9520 |
63
+ | 0.109 | 5.0 | 2385 | 0.1703 | 0.7524 | 0.8302 | 0.7894 | 0.9517 |
64
+ | 0.0873 | 6.0 | 2862 | 0.1690 | 0.7643 | 0.8396 | 0.8002 | 0.9552 |
65
+ | 0.0697 | 7.0 | 3339 | 0.1754 | 0.7696 | 0.8442 | 0.8052 | 0.9557 |
66
+ | 0.0552 | 8.0 | 3816 | 0.1793 | 0.7687 | 0.8468 | 0.8059 | 0.9572 |
67
+ | 0.0434 | 9.0 | 4293 | 0.1878 | 0.7842 | 0.8507 | 0.8161 | 0.9580 |
68
+ | 0.0354 | 10.0 | 4770 | 0.1941 | 0.7734 | 0.8488 | 0.8094 | 0.9582 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.28.1
74
+ - Pytorch 2.0.0+cu118
75
+ - Datasets 2.12.0
76
+ - Tokenizers 0.13.3