--- base_model: aubmindlab/bert-base-arabertv02-twitter tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: arabert-weakly-supervised-arabic-propaganda results: [] --- # arabert-weakly-supervised-arabic-propaganda This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-base-arabertv02-twitter) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3223 - Accuracy: 0.8389 - Precision: 0.7865 - Recall: 0.7764 - F1: 0.7814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3758 | 1.0 | 2272 | 0.3615 | 0.8193 | 0.7950 | 0.6909 | 0.7393 | | 0.3421 | 2.0 | 4544 | 0.3431 | 0.8285 | 0.7523 | 0.8016 | 0.7762 | | 0.3447 | 3.0 | 6816 | 0.3389 | 0.8305 | 0.7933 | 0.7345 | 0.7628 | | 0.3229 | 4.0 | 9088 | 0.3297 | 0.8352 | 0.7725 | 0.7877 | 0.7800 | | 0.3176 | 5.0 | 11360 | 0.3223 | 0.8389 | 0.7865 | 0.7764 | 0.7814 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1