--- base_model: aubmindlab/bert-base-arabertv2 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: arabertv2-fully-supervised-arabic-propaganda results: [] --- # arabertv2-fully-supervised-arabic-propaganda This model is a fine-tuned version of [aubmindlab/bert-base-arabertv2](https://huggingface.co/aubmindlab/bert-base-arabertv2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3894 - Accuracy: 0.9262 - Precision: 0.6042 - Recall: 0.7073 - F1: 0.6517 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4919 | 1.0 | 20 | 0.5087 | 0.8381 | 0.3516 | 0.7805 | 0.4848 | | 0.3633 | 2.0 | 40 | 0.4010 | 0.8333 | 0.3474 | 0.8049 | 0.4853 | | 0.2017 | 3.0 | 60 | 0.3635 | 0.9 | 0.4918 | 0.7317 | 0.5882 | | 0.3071 | 4.0 | 80 | 0.3981 | 0.9333 | 0.6444 | 0.7073 | 0.6744 | | 0.145 | 5.0 | 100 | 0.3894 | 0.9262 | 0.6042 | 0.7073 | 0.6517 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1