--- library_name: transformers license: apache-2.0 base_model: google/mt5-small tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: ML5-fine-tuning-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum config: default split: test args: default metrics: - name: Rouge1 type: rouge value: 0.5714 --- # ML5-fine-tuning-xsum This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 7.4333 - Rouge1: 0.5714 - Rouge2: 0.0 - Rougel: 0.5714 - Rougelsum: 0.5714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 18.7065 | 1.0 | 7 | 9.6966 | 0.0 | 0.0 | 0.0 | 0.0 | | 10.3198 | 2.0 | 14 | 7.4333 | 0.5714 | 0.0 | 0.5714 | 0.5714 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.0+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1