|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Processor class for Bert VITS2 |
|
""" |
|
|
|
import os |
|
from typing import Dict |
|
import re |
|
|
|
from transformers.tokenization_utils_base import BatchEncoding |
|
from transformers.processing_utils import ProcessorMixin |
|
from transformers.utils import logging |
|
from transformers import AutoTokenizer, PreTrainedTokenizer |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
def chinese_number_to_words(text): |
|
out = "" |
|
if text[0] == "-": |
|
out += "負" |
|
text = text[1:] |
|
elif text[0] == "+": |
|
out += "正" |
|
text = text[1:] |
|
if "." in text: |
|
integer, decimal = text.split(".") |
|
out += chinese_number_to_words(integer) |
|
out += "點" |
|
for c in decimal: |
|
out += chinese_number_to_words(c) |
|
return out |
|
chinese_num = ["零", "一", "二", "三", "四", "五", "六", "七", "八", "九"] |
|
length = len(text) |
|
for i, c in enumerate(text): |
|
if c == "0" and out[-1] not in chinese_num: |
|
if i != length - 1 or length == 1: |
|
out += chinese_num[0] |
|
else: |
|
out += chinese_num[int(c)] |
|
if length - i == 2: |
|
out += "十" |
|
elif length - i == 3: |
|
out += "百" |
|
elif length - i == 4: |
|
out += "千" |
|
elif length - i == 5: |
|
out += "萬" |
|
elif length - i == 6: |
|
out += "十" |
|
elif length - i == 7: |
|
out += "百" |
|
elif length - i == 8: |
|
out += "千" |
|
elif length - i == 9: |
|
out += "億" |
|
elif length - i == 10: |
|
out += "十" |
|
elif length - i == 11: |
|
out += "百" |
|
elif length - i == 12: |
|
out += "千" |
|
elif length - i == 13: |
|
out += "兆" |
|
elif length - i == 14: |
|
out += "十" |
|
elif length - i == 15: |
|
out += "百" |
|
elif length - i == 16: |
|
out += "千" |
|
elif length - i == 17: |
|
out += "京" |
|
return out |
|
|
|
|
|
class BertVits2Processor(ProcessorMixin): |
|
r""" |
|
Constructs a Bark processor which wraps a text tokenizer and optional Bark voice presets into a single processor. |
|
|
|
Args: |
|
tokenizers ([`PreTrainedTokenizer`]): |
|
An instance of [`PreTrainedTokenizer`]. |
|
bert_tokenizer ([`PreTrainedTokenizer`]): |
|
An instance of [`PreTrainedTokenizer`]. |
|
|
|
""" |
|
|
|
tokenizer_class = "AutoTokenizer" |
|
attributes = ["tokenizer"] |
|
|
|
def __init__(self, tokenizer: PreTrainedTokenizer, bert_tokenizers: Dict[str, PreTrainedTokenizer]): |
|
super().__init__(tokenizer) |
|
self.__bert_tokenizers = bert_tokenizers |
|
|
|
@property |
|
def bert_tokenizers(self): |
|
return self.__bert_tokenizers |
|
|
|
def preprocess_stage1(self, text, language=None): |
|
|
|
text = text.replace(",", ",").replace("。", ".").replace("?", "?").replace("!", "!").replace("...", "…") |
|
|
|
text = re.sub(r"\s+", " ", text).strip() |
|
|
|
if language == "zh": |
|
text = re.sub(r"[+-]?\d+", lambda x: chinese_number_to_words(x.group()), text) |
|
return text |
|
|
|
def preprocess_stage2(self, text, language=None): |
|
|
|
text = re.sub(r"\s", 'SP', text).strip() |
|
return text |
|
|
|
def __call__( |
|
self, |
|
text=None, |
|
language=None, |
|
return_tensors="pt", |
|
max_length=256, |
|
add_special_tokens=True, |
|
return_attention_mask=True, |
|
padding="longest", |
|
**kwargs, |
|
): |
|
""" |
|
Main method to prepare for the model one or several sequences(s). This method forwards the `text` and `kwargs` |
|
arguments to the AutoTokenizer's [`~AutoTokenizer.__call__`] to encode the text. The method also proposes a |
|
voice preset which is a dictionary of arrays that conditions `Bark`'s output. `kwargs` arguments are forwarded |
|
to the tokenizer and to `cached_file` method if `voice_preset` is a valid filename. |
|
|
|
Args: |
|
text (`str`, `List[str]`, `List[List[str]]`): |
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings |
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set |
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). |
|
return_tensors (`str` or [`~utils.TensorType`], *optional*): |
|
If set, will return tensors of a particular framework. Acceptable values are: |
|
|
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
- `'np'`: Return NumPy `np.ndarray` objects. |
|
|
|
Returns: |
|
Tuple([`BatchEncoding`], [`BatchFeature`]): A tuple composed of a [`BatchEncoding`], i.e the output of the |
|
`tokenizer` and a [`BatchFeature`], i.e the voice preset with the right tensors type. |
|
""" |
|
|
|
if language is None: |
|
raise ValueError("The language argument is required for BertVits2Processor.") |
|
|
|
if language not in self.bert_tokenizers: |
|
raise ValueError(f"Language '{language}' not supported by BertVits2Processor.") |
|
|
|
bert_text = self.preprocess_stage1(text, language) |
|
g2p_text = self.preprocess_stage2(bert_text, language) |
|
|
|
phone_text, tone_ids, lang_ids, word2ph = self.tokenizer.convert_g2p(g2p_text, language, add_special_tokens) |
|
|
|
encoded_text = self.tokenizer( |
|
phone_text, |
|
return_tensors=return_tensors, |
|
padding=padding, |
|
max_length=max_length, |
|
return_attention_mask=return_attention_mask, |
|
**kwargs, |
|
) |
|
|
|
bert_tokenizer = self.bert_tokenizers[language] |
|
bert_encoded_text = bert_tokenizer( |
|
bert_text, |
|
return_tensors=return_tensors, |
|
padding=padding, |
|
max_length=max_length, |
|
return_attention_mask=return_attention_mask, |
|
add_special_tokens=add_special_tokens, |
|
return_token_type_ids=False, |
|
**kwargs, |
|
) |
|
|
|
return BatchEncoding({ |
|
**encoded_text, |
|
**{ f"bert_{k}": v for k, v in bert_encoded_text.items() }, |
|
"tone_ids": [tone_ids], |
|
"language_ids": [lang_ids], |
|
"word_to_phoneme": [word2ph], |
|
}, tensor_type=return_tensors) |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): |
|
args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs) |
|
processor_dict, kwargs = cls.get_processor_dict(pretrained_model_name_or_path, **kwargs) |
|
processor_dict['bert_tokenizers'] = { |
|
key: AutoTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder=val) |
|
for key, val in processor_dict['bert_tokenizers'].items() |
|
} |
|
return cls.from_args_and_dict(args, processor_dict, **kwargs) |
|
|
|
def save_pretrained( |
|
self, |
|
save_directory, |
|
**kwargs, |
|
): |
|
""" |
|
Save the processor to the `save_directory` directory. If the processor has been created from a |
|
repository, the method will push the model to the `save_directory` repository. |
|
|
|
Args: |
|
save_directory (`str`): |
|
Directory where the processor will be saved. |
|
push_to_hub (`bool`, `optional`, defaults to `False`): |
|
Whether or not to push the model to the Hugging Face Hub after saving it. |
|
kwargs: |
|
Additional attributes to be saved with the processor. |
|
""" |
|
os.makedirs(save_directory, exist_ok=True) |
|
for language, tokenizer in self.bert_tokenizers.items(): |
|
tokenizer.save_pretrained(os.path.join(save_directory, f"bert_{language}")) |
|
bert_tokenizers = self.bert_tokenizers |
|
self.bert_tokenizers = {language: f"bert_{language}" for language in self.bert_tokenizers} |
|
outputs = super().save_pretrained(save_directory, **kwargs) |
|
self.bert_tokenizers = bert_tokenizers |
|
return outputs |
|
|