Buseak commited on
Commit
c5138fe
1 Parent(s): 65607e8

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: canine_vowelizer_0701_retrain
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # canine_vowelizer_0701_retrain
19
+
20
+ This model is a fine-tuned version of [Buseak/canine_vowelizer_0701](https://huggingface.co/Buseak/canine_vowelizer_0701) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0066
23
+ - Precision: 1.0000
24
+ - Recall: 1.0000
25
+ - F1: 1.0000
26
+ - Accuracy: 0.9980
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.0816 | 1.0 | 976 | 0.0322 | 1.0000 | 1.0000 | 1.0000 | 0.9891 |
58
+ | 0.0776 | 2.0 | 1952 | 0.0273 | 0.9999 | 1.0000 | 1.0000 | 0.9906 |
59
+ | 0.0694 | 3.0 | 2928 | 0.0228 | 0.9999 | 1.0000 | 1.0000 | 0.9924 |
60
+ | 0.0617 | 4.0 | 3904 | 0.0181 | 1.0000 | 1.0000 | 1.0000 | 0.9939 |
61
+ | 0.0559 | 5.0 | 4880 | 0.0144 | 1.0000 | 1.0000 | 1.0000 | 0.9952 |
62
+ | 0.0477 | 6.0 | 5856 | 0.0120 | 1.0000 | 1.0000 | 1.0000 | 0.9962 |
63
+ | 0.0438 | 7.0 | 6832 | 0.0098 | 1.0000 | 1.0000 | 1.0000 | 0.9969 |
64
+ | 0.0397 | 8.0 | 7808 | 0.0080 | 1.0000 | 1.0000 | 1.0000 | 0.9975 |
65
+ | 0.0365 | 9.0 | 8784 | 0.0071 | 1.0000 | 1.0000 | 1.0000 | 0.9978 |
66
+ | 0.0328 | 10.0 | 9760 | 0.0066 | 1.0000 | 1.0000 | 1.0000 | 0.9980 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.28.0
72
+ - Pytorch 2.1.0+cu121
73
+ - Datasets 2.16.1
74
+ - Tokenizers 0.13.3