update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: canine_vowelizer_0706_v2
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# canine_vowelizer_0706_v2
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0003
|
23 |
+
- Precision: 1.0000
|
24 |
+
- Recall: 1.0000
|
25 |
+
- F1: 1.0000
|
26 |
+
- Accuracy: 1.0000
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 2
|
47 |
+
- eval_batch_size: 2
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 20
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 0.161 | 1.0 | 3902 | 0.1236 | 0.9999 | 1.0000 | 0.9999 | 0.9578 |
|
58 |
+
| 0.1197 | 2.0 | 7804 | 0.0883 | 1.0000 | 1.0000 | 1.0000 | 0.9689 |
|
59 |
+
| 0.0978 | 3.0 | 11706 | 0.0626 | 1.0000 | 1.0000 | 1.0000 | 0.9779 |
|
60 |
+
| 0.0808 | 4.0 | 15608 | 0.0454 | 1.0000 | 1.0000 | 1.0000 | 0.9838 |
|
61 |
+
| 0.0668 | 5.0 | 19510 | 0.0320 | 1.0000 | 1.0000 | 1.0000 | 0.9885 |
|
62 |
+
| 0.0524 | 6.0 | 23412 | 0.0219 | 1.0000 | 1.0000 | 1.0000 | 0.9921 |
|
63 |
+
| 0.042 | 7.0 | 27314 | 0.0150 | 1.0000 | 1.0000 | 1.0000 | 0.9946 |
|
64 |
+
| 0.0348 | 8.0 | 31216 | 0.0109 | 1.0000 | 1.0000 | 1.0000 | 0.9961 |
|
65 |
+
| 0.0286 | 9.0 | 35118 | 0.0072 | 1.0000 | 1.0000 | 1.0000 | 0.9974 |
|
66 |
+
| 0.025 | 10.0 | 39020 | 0.0049 | 1.0000 | 1.0000 | 1.0000 | 0.9983 |
|
67 |
+
| 0.0183 | 11.0 | 42922 | 0.0035 | 1.0000 | 1.0000 | 1.0000 | 0.9988 |
|
68 |
+
| 0.0157 | 12.0 | 46824 | 0.0025 | 1.0000 | 1.0000 | 1.0000 | 0.9992 |
|
69 |
+
| 0.0113 | 13.0 | 50726 | 0.0016 | 1.0000 | 1.0000 | 1.0000 | 0.9995 |
|
70 |
+
| 0.0097 | 14.0 | 54628 | 0.0012 | 1.0000 | 1.0000 | 1.0000 | 0.9996 |
|
71 |
+
| 0.0081 | 15.0 | 58530 | 0.0008 | 1.0000 | 1.0000 | 1.0000 | 0.9998 |
|
72 |
+
| 0.0071 | 16.0 | 62432 | 0.0007 | 1.0000 | 1.0000 | 1.0000 | 0.9998 |
|
73 |
+
| 0.0054 | 17.0 | 66334 | 0.0005 | 1.0000 | 1.0000 | 1.0000 | 0.9999 |
|
74 |
+
| 0.0044 | 18.0 | 70236 | 0.0004 | 1.0000 | 1.0000 | 1.0000 | 0.9999 |
|
75 |
+
| 0.0053 | 19.0 | 74138 | 0.0003 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|
76 |
+
| 0.0039 | 20.0 | 78040 | 0.0003 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.28.0
|
82 |
+
- Pytorch 2.0.1+cu118
|
83 |
+
- Datasets 2.12.0
|
84 |
+
- Tokenizers 0.13.3
|