Buseak commited on
Commit
ebd5d65
1 Parent(s): 3bb594d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: canine_vowelizer_0706_v2
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # canine_vowelizer_0706_v2
19
+
20
+ This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0003
23
+ - Precision: 1.0000
24
+ - Recall: 1.0000
25
+ - F1: 1.0000
26
+ - Accuracy: 1.0000
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 2
47
+ - eval_batch_size: 2
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 20
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.161 | 1.0 | 3902 | 0.1236 | 0.9999 | 1.0000 | 0.9999 | 0.9578 |
58
+ | 0.1197 | 2.0 | 7804 | 0.0883 | 1.0000 | 1.0000 | 1.0000 | 0.9689 |
59
+ | 0.0978 | 3.0 | 11706 | 0.0626 | 1.0000 | 1.0000 | 1.0000 | 0.9779 |
60
+ | 0.0808 | 4.0 | 15608 | 0.0454 | 1.0000 | 1.0000 | 1.0000 | 0.9838 |
61
+ | 0.0668 | 5.0 | 19510 | 0.0320 | 1.0000 | 1.0000 | 1.0000 | 0.9885 |
62
+ | 0.0524 | 6.0 | 23412 | 0.0219 | 1.0000 | 1.0000 | 1.0000 | 0.9921 |
63
+ | 0.042 | 7.0 | 27314 | 0.0150 | 1.0000 | 1.0000 | 1.0000 | 0.9946 |
64
+ | 0.0348 | 8.0 | 31216 | 0.0109 | 1.0000 | 1.0000 | 1.0000 | 0.9961 |
65
+ | 0.0286 | 9.0 | 35118 | 0.0072 | 1.0000 | 1.0000 | 1.0000 | 0.9974 |
66
+ | 0.025 | 10.0 | 39020 | 0.0049 | 1.0000 | 1.0000 | 1.0000 | 0.9983 |
67
+ | 0.0183 | 11.0 | 42922 | 0.0035 | 1.0000 | 1.0000 | 1.0000 | 0.9988 |
68
+ | 0.0157 | 12.0 | 46824 | 0.0025 | 1.0000 | 1.0000 | 1.0000 | 0.9992 |
69
+ | 0.0113 | 13.0 | 50726 | 0.0016 | 1.0000 | 1.0000 | 1.0000 | 0.9995 |
70
+ | 0.0097 | 14.0 | 54628 | 0.0012 | 1.0000 | 1.0000 | 1.0000 | 0.9996 |
71
+ | 0.0081 | 15.0 | 58530 | 0.0008 | 1.0000 | 1.0000 | 1.0000 | 0.9998 |
72
+ | 0.0071 | 16.0 | 62432 | 0.0007 | 1.0000 | 1.0000 | 1.0000 | 0.9998 |
73
+ | 0.0054 | 17.0 | 66334 | 0.0005 | 1.0000 | 1.0000 | 1.0000 | 0.9999 |
74
+ | 0.0044 | 18.0 | 70236 | 0.0004 | 1.0000 | 1.0000 | 1.0000 | 0.9999 |
75
+ | 0.0053 | 19.0 | 74138 | 0.0003 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
76
+ | 0.0039 | 20.0 | 78040 | 0.0003 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.28.0
82
+ - Pytorch 2.0.1+cu118
83
+ - Datasets 2.12.0
84
+ - Tokenizers 0.13.3