File size: 2,394 Bytes
e82609b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: md_mt5_1911_v16_deneme
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# md_mt5_1911_v16_deneme

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3865
- Bleu: 0.6474
- Gen Len: 18.7566

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu   | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|
| 5.2266        | 1.0   | 1250  | 2.0508          | 0.8851 | 16.8074 |
| 1.9533        | 2.0   | 2500  | 1.1931          | 1.1725 | 18.8668 |
| 1.5627        | 3.0   | 3750  | 0.8881          | 0.6185 | 18.672  |
| 1.237         | 4.0   | 5000  | 0.7267          | 0.6301 | 18.7212 |
| 1.1021        | 5.0   | 6250  | 0.6370          | 0.6165 | 18.679  |
| 0.962         | 6.0   | 7500  | 0.5726          | 0.5885 | 18.7398 |
| 0.8972        | 7.0   | 8750  | 0.5235          | 0.6011 | 18.7622 |
| 0.8385        | 8.0   | 10000 | 0.4881          | 0.6087 | 18.761  |
| 0.7949        | 9.0   | 11250 | 0.4579          | 0.6185 | 18.7696 |
| 0.7482        | 10.0  | 12500 | 0.4342          | 0.6175 | 18.755  |
| 0.7304        | 11.0  | 13750 | 0.4159          | 0.631  | 18.7478 |
| 0.7009        | 12.0  | 15000 | 0.4029          | 0.6373 | 18.7532 |
| 0.6863        | 13.0  | 16250 | 0.3938          | 0.6434 | 18.7546 |
| 0.6841        | 14.0  | 17500 | 0.3882          | 0.6464 | 18.7512 |
| 0.6749        | 15.0  | 18750 | 0.3865          | 0.6474 | 18.7566 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0