File size: 3,261 Bytes
d1bb646 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: spellcorrector_0411
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# spellcorrector_0411
This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0830
- Precision: 0.9784
- Recall: 0.9815
- F1: 0.9799
- Accuracy: 0.9828
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2319 | 1.0 | 975 | 0.1268 | 0.9458 | 0.9834 | 0.9642 | 0.9741 |
| 0.1296 | 2.0 | 1950 | 0.1063 | 0.9530 | 0.9812 | 0.9669 | 0.9754 |
| 0.1095 | 3.0 | 2925 | 0.0883 | 0.9653 | 0.9788 | 0.9720 | 0.9786 |
| 0.0934 | 4.0 | 3900 | 0.0842 | 0.9692 | 0.9776 | 0.9734 | 0.9790 |
| 0.0829 | 5.0 | 4875 | 0.0794 | 0.9716 | 0.9797 | 0.9756 | 0.9809 |
| 0.0753 | 6.0 | 5850 | 0.0755 | 0.9729 | 0.9816 | 0.9773 | 0.9817 |
| 0.0695 | 7.0 | 6825 | 0.0739 | 0.9751 | 0.9789 | 0.9770 | 0.9815 |
| 0.0641 | 8.0 | 7800 | 0.0736 | 0.9767 | 0.9798 | 0.9782 | 0.9821 |
| 0.0591 | 9.0 | 8775 | 0.0744 | 0.9767 | 0.9805 | 0.9786 | 0.9822 |
| 0.0537 | 10.0 | 9750 | 0.0742 | 0.9777 | 0.9798 | 0.9787 | 0.9822 |
| 0.0502 | 11.0 | 10725 | 0.0753 | 0.9773 | 0.9806 | 0.9790 | 0.9825 |
| 0.0472 | 12.0 | 11700 | 0.0757 | 0.9780 | 0.9808 | 0.9794 | 0.9827 |
| 0.044 | 13.0 | 12675 | 0.0768 | 0.9772 | 0.9816 | 0.9794 | 0.9827 |
| 0.0407 | 14.0 | 13650 | 0.0784 | 0.9775 | 0.9815 | 0.9795 | 0.9827 |
| 0.039 | 15.0 | 14625 | 0.0790 | 0.9779 | 0.9816 | 0.9798 | 0.9828 |
| 0.0364 | 16.0 | 15600 | 0.0804 | 0.9778 | 0.9813 | 0.9795 | 0.9825 |
| 0.0343 | 17.0 | 16575 | 0.0811 | 0.9783 | 0.9811 | 0.9797 | 0.9828 |
| 0.0329 | 18.0 | 17550 | 0.0819 | 0.9785 | 0.9820 | 0.9803 | 0.9829 |
| 0.0314 | 19.0 | 18525 | 0.0822 | 0.9785 | 0.9808 | 0.9797 | 0.9826 |
| 0.0308 | 20.0 | 19500 | 0.0830 | 0.9784 | 0.9815 | 0.9799 | 0.9828 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.13.3
|