update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: spellcorrector_1009_v4
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# spellcorrector_1009_v4
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.3307
|
23 |
+
- Precision: 0.9681
|
24 |
+
- Recall: 0.9681
|
25 |
+
- F1: 0.9681
|
26 |
+
- Accuracy: 0.9573
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 4
|
47 |
+
- eval_batch_size: 4
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 20
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 0.2767 | 1.0 | 1951 | 0.2331 | 0.96 | 0.9562 | 0.9581 | 0.9383 |
|
58 |
+
| 0.2181 | 2.0 | 3902 | 0.2028 | 0.9524 | 0.9562 | 0.9543 | 0.9450 |
|
59 |
+
| 0.1776 | 3.0 | 5853 | 0.2019 | 0.96 | 0.9562 | 0.9581 | 0.9498 |
|
60 |
+
| 0.1519 | 4.0 | 7804 | 0.2038 | 0.9526 | 0.9602 | 0.9563 | 0.9498 |
|
61 |
+
| 0.1277 | 5.0 | 9755 | 0.2091 | 0.9567 | 0.9681 | 0.9624 | 0.9521 |
|
62 |
+
| 0.1133 | 6.0 | 11706 | 0.2187 | 0.9449 | 0.9562 | 0.9505 | 0.9540 |
|
63 |
+
| 0.1041 | 7.0 | 13657 | 0.2378 | 0.9762 | 0.9801 | 0.9781 | 0.9545 |
|
64 |
+
| 0.0906 | 8.0 | 15608 | 0.2371 | 0.9603 | 0.9641 | 0.9622 | 0.9558 |
|
65 |
+
| 0.0806 | 9.0 | 17559 | 0.2509 | 0.976 | 0.9721 | 0.9741 | 0.9532 |
|
66 |
+
| 0.0689 | 10.0 | 19510 | 0.2624 | 0.9681 | 0.9681 | 0.9681 | 0.9563 |
|
67 |
+
| 0.0623 | 11.0 | 21461 | 0.2623 | 0.976 | 0.9721 | 0.9741 | 0.9559 |
|
68 |
+
| 0.06 | 12.0 | 23412 | 0.2783 | 0.9643 | 0.9681 | 0.9662 | 0.9564 |
|
69 |
+
| 0.0537 | 13.0 | 25363 | 0.2938 | 0.976 | 0.9721 | 0.9741 | 0.9569 |
|
70 |
+
| 0.0507 | 14.0 | 27314 | 0.2976 | 0.9603 | 0.9641 | 0.9622 | 0.9565 |
|
71 |
+
| 0.0491 | 15.0 | 29265 | 0.3075 | 0.9681 | 0.9681 | 0.9681 | 0.9576 |
|
72 |
+
| 0.0426 | 16.0 | 31216 | 0.3182 | 0.9681 | 0.9681 | 0.9681 | 0.9571 |
|
73 |
+
| 0.0426 | 17.0 | 33167 | 0.3154 | 0.9681 | 0.9681 | 0.9681 | 0.9572 |
|
74 |
+
| 0.0387 | 18.0 | 35118 | 0.3266 | 0.9681 | 0.9681 | 0.9681 | 0.9573 |
|
75 |
+
| 0.0336 | 19.0 | 37069 | 0.3317 | 0.9681 | 0.9681 | 0.9681 | 0.9574 |
|
76 |
+
| 0.0341 | 20.0 | 39020 | 0.3307 | 0.9681 | 0.9681 | 0.9681 | 0.9573 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.28.0
|
82 |
+
- Pytorch 2.0.1+cu118
|
83 |
+
- Datasets 2.14.5
|
84 |
+
- Tokenizers 0.13.3
|