Buseak commited on
Commit
666aca9
1 Parent(s): 3eb3dfa

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: spellcorrector_1009_v4
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # spellcorrector_1009_v4
19
+
20
+ This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.3307
23
+ - Precision: 0.9681
24
+ - Recall: 0.9681
25
+ - F1: 0.9681
26
+ - Accuracy: 0.9573
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 4
47
+ - eval_batch_size: 4
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 20
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.2767 | 1.0 | 1951 | 0.2331 | 0.96 | 0.9562 | 0.9581 | 0.9383 |
58
+ | 0.2181 | 2.0 | 3902 | 0.2028 | 0.9524 | 0.9562 | 0.9543 | 0.9450 |
59
+ | 0.1776 | 3.0 | 5853 | 0.2019 | 0.96 | 0.9562 | 0.9581 | 0.9498 |
60
+ | 0.1519 | 4.0 | 7804 | 0.2038 | 0.9526 | 0.9602 | 0.9563 | 0.9498 |
61
+ | 0.1277 | 5.0 | 9755 | 0.2091 | 0.9567 | 0.9681 | 0.9624 | 0.9521 |
62
+ | 0.1133 | 6.0 | 11706 | 0.2187 | 0.9449 | 0.9562 | 0.9505 | 0.9540 |
63
+ | 0.1041 | 7.0 | 13657 | 0.2378 | 0.9762 | 0.9801 | 0.9781 | 0.9545 |
64
+ | 0.0906 | 8.0 | 15608 | 0.2371 | 0.9603 | 0.9641 | 0.9622 | 0.9558 |
65
+ | 0.0806 | 9.0 | 17559 | 0.2509 | 0.976 | 0.9721 | 0.9741 | 0.9532 |
66
+ | 0.0689 | 10.0 | 19510 | 0.2624 | 0.9681 | 0.9681 | 0.9681 | 0.9563 |
67
+ | 0.0623 | 11.0 | 21461 | 0.2623 | 0.976 | 0.9721 | 0.9741 | 0.9559 |
68
+ | 0.06 | 12.0 | 23412 | 0.2783 | 0.9643 | 0.9681 | 0.9662 | 0.9564 |
69
+ | 0.0537 | 13.0 | 25363 | 0.2938 | 0.976 | 0.9721 | 0.9741 | 0.9569 |
70
+ | 0.0507 | 14.0 | 27314 | 0.2976 | 0.9603 | 0.9641 | 0.9622 | 0.9565 |
71
+ | 0.0491 | 15.0 | 29265 | 0.3075 | 0.9681 | 0.9681 | 0.9681 | 0.9576 |
72
+ | 0.0426 | 16.0 | 31216 | 0.3182 | 0.9681 | 0.9681 | 0.9681 | 0.9571 |
73
+ | 0.0426 | 17.0 | 33167 | 0.3154 | 0.9681 | 0.9681 | 0.9681 | 0.9572 |
74
+ | 0.0387 | 18.0 | 35118 | 0.3266 | 0.9681 | 0.9681 | 0.9681 | 0.9573 |
75
+ | 0.0336 | 19.0 | 37069 | 0.3317 | 0.9681 | 0.9681 | 0.9681 | 0.9574 |
76
+ | 0.0341 | 20.0 | 39020 | 0.3307 | 0.9681 | 0.9681 | 0.9681 | 0.9573 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.28.0
82
+ - Pytorch 2.0.1+cu118
83
+ - Datasets 2.14.5
84
+ - Tokenizers 0.13.3