update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: spellcorrector_2610_v16_canine-s
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# spellcorrector_2610_v16_canine-s
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0974
|
23 |
+
- Precision: 0.9789
|
24 |
+
- Recall: 0.9829
|
25 |
+
- F1: 0.9809
|
26 |
+
- Accuracy: 0.9838
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 8
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 30
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 0.252 | 1.0 | 976 | 0.1462 | 0.9386 | 0.9800 | 0.9589 | 0.9702 |
|
58 |
+
| 0.1463 | 2.0 | 1952 | 0.1256 | 0.9479 | 0.9794 | 0.9634 | 0.9721 |
|
59 |
+
| 0.1266 | 3.0 | 2928 | 0.1049 | 0.9578 | 0.9769 | 0.9673 | 0.9745 |
|
60 |
+
| 0.1081 | 4.0 | 3904 | 0.0938 | 0.9634 | 0.9787 | 0.9710 | 0.9772 |
|
61 |
+
| 0.0963 | 5.0 | 4880 | 0.0856 | 0.9663 | 0.9793 | 0.9727 | 0.9788 |
|
62 |
+
| 0.0863 | 6.0 | 5856 | 0.0838 | 0.9705 | 0.9759 | 0.9732 | 0.9786 |
|
63 |
+
| 0.077 | 7.0 | 6832 | 0.0804 | 0.9734 | 0.9757 | 0.9745 | 0.9797 |
|
64 |
+
| 0.0713 | 8.0 | 7808 | 0.0779 | 0.9726 | 0.9804 | 0.9765 | 0.9809 |
|
65 |
+
| 0.066 | 9.0 | 8784 | 0.0794 | 0.9749 | 0.9767 | 0.9758 | 0.9801 |
|
66 |
+
| 0.0602 | 10.0 | 9760 | 0.0748 | 0.9741 | 0.9823 | 0.9782 | 0.9821 |
|
67 |
+
| 0.0555 | 11.0 | 10736 | 0.0763 | 0.9750 | 0.9815 | 0.9782 | 0.9822 |
|
68 |
+
| 0.0512 | 12.0 | 11712 | 0.0764 | 0.9769 | 0.9800 | 0.9784 | 0.9823 |
|
69 |
+
| 0.048 | 13.0 | 12688 | 0.0767 | 0.9769 | 0.9822 | 0.9796 | 0.9832 |
|
70 |
+
| 0.0453 | 14.0 | 13664 | 0.0793 | 0.9767 | 0.9819 | 0.9793 | 0.9829 |
|
71 |
+
| 0.0412 | 15.0 | 14640 | 0.0809 | 0.9774 | 0.9822 | 0.9798 | 0.9832 |
|
72 |
+
| 0.0384 | 16.0 | 15616 | 0.0796 | 0.9765 | 0.9830 | 0.9798 | 0.9831 |
|
73 |
+
| 0.0364 | 17.0 | 16592 | 0.0830 | 0.9779 | 0.9825 | 0.9802 | 0.9833 |
|
74 |
+
| 0.0344 | 18.0 | 17568 | 0.0834 | 0.9779 | 0.9819 | 0.9799 | 0.9831 |
|
75 |
+
| 0.0307 | 19.0 | 18544 | 0.0857 | 0.9777 | 0.9823 | 0.9800 | 0.9832 |
|
76 |
+
| 0.0283 | 20.0 | 19520 | 0.0869 | 0.9776 | 0.9819 | 0.9797 | 0.9832 |
|
77 |
+
| 0.0269 | 21.0 | 20496 | 0.0885 | 0.9781 | 0.9822 | 0.9802 | 0.9833 |
|
78 |
+
| 0.0252 | 22.0 | 21472 | 0.0906 | 0.9784 | 0.9814 | 0.9799 | 0.9833 |
|
79 |
+
| 0.0229 | 23.0 | 22448 | 0.0932 | 0.9785 | 0.9820 | 0.9802 | 0.9833 |
|
80 |
+
| 0.0223 | 24.0 | 23424 | 0.0910 | 0.9785 | 0.9832 | 0.9809 | 0.9835 |
|
81 |
+
| 0.0209 | 25.0 | 24400 | 0.0936 | 0.9787 | 0.9824 | 0.9805 | 0.9836 |
|
82 |
+
| 0.0199 | 26.0 | 25376 | 0.0948 | 0.9791 | 0.9823 | 0.9807 | 0.9838 |
|
83 |
+
| 0.0189 | 27.0 | 26352 | 0.0961 | 0.9792 | 0.9828 | 0.9810 | 0.9838 |
|
84 |
+
| 0.0184 | 28.0 | 27328 | 0.0965 | 0.9786 | 0.9834 | 0.9810 | 0.9840 |
|
85 |
+
| 0.0178 | 29.0 | 28304 | 0.0970 | 0.9789 | 0.9829 | 0.9809 | 0.9838 |
|
86 |
+
| 0.0174 | 30.0 | 29280 | 0.0974 | 0.9789 | 0.9829 | 0.9809 | 0.9838 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.28.0
|
92 |
+
- Pytorch 2.1.0+cu118
|
93 |
+
- Datasets 2.14.6
|
94 |
+
- Tokenizers 0.13.3
|