--- tags: - model_hub_mixin - pytorch_model_hub_mixin - crosscoder license: mit datasets: - HuggingFaceFW/fineweb - lmsys/lmsys-chat-1m base_model: - google/gemma-2-2b-it - google/gemma-2-2b pipeline_tag: feature-extraction --- This crosscoder was trained on parallel activations of Gemma 2 2B and Gemma 2 2B IT at layer 13 on a subset of fineweb and lsmsy-chat-1m dataset. You can load it using our branch of the `dictionary_learning` library: ```py !pip install git+https://github.com/jkminder/dictionary_learning from dictionary_learning import CrossCoder from nnsight import LanguageModel import torch as th crosscoder = CrossCoder.from_pretrained("Butanium/gemma-2-2b-crosscoder-l13-mu4.1e-02-lr1e-04", from_hub=True) gemma_2 = LanguageModel("google/gemma-2-2b", device_map="cuda:0") gemma_2_it = LanguageModel("google/gemma-2-2b-it", device_map="cuda:1") prompt = "quick fox brown" with gemma_2.trace(prompt): l13_act_base = gemma_2.model.layers[13].output[0][:, -1].save() # (1, 2304) gemma_2.model.layers[13].output.stop() with gemma_2_it.trace(prompt): l13_act_it = gemma_2_it.model.layers[13].output[0][:, -1].save() # (1, 2304) gemma_2_it.model.layers[13].output.stop() crosscoder_input = th.cat([l13_act_base, l13_act_it], dim=0).unsqueeze(0).cpu() # (batch, 2, 2304) print(crosscoder_input.shape) reconstruction, features = crosscoder(crosscoder_input, output_features=True) # print metrics print(f"MSE loss: {th.nn.functional.mse_loss(reconstruction, crosscoder_input).item():.2f}") print(f"L1 sparsity: {features.abs().sum():.1f}") print(f"L0 sparsity: {(features > 1e-4).sum()}") ```