ByteExplorer
commited on
Commit
•
3669e5a
1
Parent(s):
cf3d2a4
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.89 +/- 0.71
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4552836e39aac1d3437bdb85af5ba10d8a0922aa55e1cb5dbacc361ac6714bad
|
3 |
+
size 108183
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0ef413f6a0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f0ef4133880>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1689804975859388993,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MIlQGXAIkBUwCUToWUKYwBX5SFlIxiL2hvbWUvYXJyYW4vaHVnZ2luZ2ZhY2UvUkwtVTYvbXllbnYvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGIvaG9tZS9hcnJhbi9odWdnaW5nZmFjZS9STC1VNi9teWVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkF67PvO0Xbz6eA4/kF67PvO0Xbz6eA4/kF67PvO0Xbz6eA4/kF67PvO0Xbz6eA4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAix1fvzIXHz9vK8k/i5elvyYVgr8e5T8/aTsGP2Y2vrtPqqO/ty3iPjbFi78s+0W/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACQXrs+87RdvPp4Dj8dJJU8fBPEurFtcDyQXrs+87RdvPp4Dj8dJJU8fBPEurFtcDyQXrs+87RdvPp4Dj8dJJU8fBPEurFtcDyQXrs+87RdvPp4Dj8dJJU8fBPEurFtcDyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.36595583 -0.01353191 0.55653346]\n [ 0.36595583 -0.01353191 0.55653346]\n [ 0.36595583 -0.01353191 0.55653346]\n [ 0.36595583 -0.01353191 0.55653346]]",
|
38 |
+
"desired_goal": "[[-0.87154454 0.6214477 1.571638 ]\n [-1.2936872 -1.0162704 0.7495898 ]\n [ 0.524344 -0.00580482 -1.2786349 ]\n [ 0.44175503 -1.0919559 -0.7733638 ]]",
|
39 |
+
"observation": "[[ 0.36595583 -0.01353191 0.55653346 0.0182057 -0.00149594 0.01467459]\n [ 0.36595583 -0.01353191 0.55653346 0.0182057 -0.00149594 0.01467459]\n [ 0.36595583 -0.01353191 0.55653346 0.0182057 -0.00149594 0.01467459]\n [ 0.36595583 -0.01353191 0.55653346 0.0182057 -0.00149594 0.01467459]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAnMGNvUIKJr0QcMI9at+MvS8DsjyZI4A+OVnpPGHvmD0/B0E8SiMDPkKgWj1X/mc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.06921694 -0.04053713 0.0949403 ]\n [-0.0687855 0.02173003 0.2502716 ]\n [ 0.02848493 0.07467533 0.01178151]\n [ 0.1280643 0.05337549 0.22655617]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcTjzqzngEcCUhpRSlIwBbJRLMowBdJRHQJSd3IxQBPt1fZQoaAZoCWgPQwj93TtqTNgQwJSGlFKUaBVLMmgWR0CUnZ5Y5ksjdX2UKGgGaAloD0MInmLVIMztAcCUhpRSlGgVSzJoFkdAlJ1iAc1fmnV9lChoBmgJaA9DCNsYO+ElmAPAlIaUUpRoFUsyaBZHQJSdI8aGYa51fZQoaAZoCWgPQwhlwi/186YdwJSGlFKUaBVLMmgWR0CUntETQE6ldX2UKGgGaAloD0MI+dnIdVMqC8CUhpRSlGgVSzJoFkdAlJ6SJGe+VXV9lChoBmgJaA9DCK1rtBzoQQLAlIaUUpRoFUsyaBZHQJSeVZ9uxbB1fZQoaAZoCWgPQwju0LAYda0EwJSGlFKUaBVLMmgWR0CUnhc9W6sidX2UKGgGaAloD0MIwVQzayngC8CUhpRSlGgVSzJoFkdAlJ/lQyhzvXV9lChoBmgJaA9DCOrr+Zrl0gvAlIaUUpRoFUsyaBZHQJSfpmthd+p1fZQoaAZoCWgPQwjJWdjTDj8HwJSGlFKUaBVLMmgWR0CUn2ohY/3WdX2UKGgGaAloD0MIisvxCkRP/7+UhpRSlGgVSzJoFkdAlJ8spG4I8nV9lChoBmgJaA9DCCZUcHhBBP2/lIaUUpRoFUsyaBZHQJSg9wiqyW11fZQoaAZoCWgPQwitw9FVunsAwJSGlFKUaBVLMmgWR0CUoLgxagVXdX2UKGgGaAloD0MIlfCEXn8SEMCUhpRSlGgVSzJoFkdAlKB8figkC3V9lChoBmgJaA9DCLXGoBNCJxTAlIaUUpRoFUsyaBZHQJSgPkuHvc91fZQoaAZoCWgPQwjy7V2DvlQLwJSGlFKUaBVLMmgWR0CUoguEEkjYdX2UKGgGaAloD0MIwi/186biEcCUhpRSlGgVSzJoFkdAlKHMqJ/G2nV9lChoBmgJaA9DCHUeFf939BnAlIaUUpRoFUsyaBZHQJShkGQjlgd1fZQoaAZoCWgPQwi5T44CRAEMwJSGlFKUaBVLMmgWR0CUoVJkoWpIdX2UKGgGaAloD0MIyTocXaU7/7+UhpRSlGgVSzJoFkdAlKMuRoysS3V9lChoBmgJaA9DCKyL22gA7wPAlIaUUpRoFUsyaBZHQJSi774zrNZ1fZQoaAZoCWgPQwhAwjBgyVUOwJSGlFKUaBVLMmgWR0CUorNsnAqNdX2UKGgGaAloD0MIGHrE6LnFAcCUhpRSlGgVSzJoFkdAlKJ19BrvcHV9lChoBmgJaA9DCMWScvc5Pvu/lIaUUpRoFUsyaBZHQJSkO9zwMH91fZQoaAZoCWgPQwiCdLFppVADwJSGlFKUaBVLMmgWR0CUo/y1/lQudX2UKGgGaAloD0MI8parH5vkB8CUhpRSlGgVSzJoFkdAlKPAVTJhfHV9lChoBmgJaA9DCO2cZoF2RxfAlIaUUpRoFUsyaBZHQJSjgjs2NvR1fZQoaAZoCWgPQwikjLgANKoGwJSGlFKUaBVLMmgWR0CUpVAzpHI7dX2UKGgGaAloD0MIMbH5uDb0BMCUhpRSlGgVSzJoFkdAlKURStNi6XV9lChoBmgJaA9DCPipKjQQyxDAlIaUUpRoFUsyaBZHQJSk1QDV6NV1fZQoaAZoCWgPQwg50a5Cyh8QwJSGlFKUaBVLMmgWR0CUpJbgjyFxdX2UKGgGaAloD0MICeBm8WKREMCUhpRSlGgVSzJoFkdAlKZmTcIqsnV9lChoBmgJaA9DCFiQZiyaLgDAlIaUUpRoFUsyaBZHQJSmJ3pwCKd1fZQoaAZoCWgPQwhe2nBYGigUwJSGlFKUaBVLMmgWR0CUpesbvPTodX2UKGgGaAloD0MITUpBt5cUBsCUhpRSlGgVSzJoFkdAlKWtTLns9nV9lChoBmgJaA9DCK67eapDDgXAlIaUUpRoFUsyaBZHQJSnVg/keZJ1fZQoaAZoCWgPQwg1KnCyDSwTwJSGlFKUaBVLMmgWR0CUpxc6NlyzdX2UKGgGaAloD0MIjV2iemugCMCUhpRSlGgVSzJoFkdAlKbaqGUOeHV9lChoBmgJaA9DCO5e7pOjUBDAlIaUUpRoFUsyaBZHQJSmnI/7iyZ1fZQoaAZoCWgPQwj9aaM6HUgAwJSGlFKUaBVLMmgWR0CUqFeT3Zf2dX2UKGgGaAloD0MIr5P6srQzC8CUhpRSlGgVSzJoFkdAlKgYePq9oXV9lChoBmgJaA9DCJW2uMZn8gbAlIaUUpRoFUsyaBZHQJSn3Fl05lx1fZQoaAZoCWgPQwjhKeRKPQsNwJSGlFKUaBVLMmgWR0CUp55D7ZWadX2UKGgGaAloD0MIhq5EoPpHEMCUhpRSlGgVSzJoFkdAlKlf3ai9I3V9lChoBmgJaA9DCBMLfEW3PgHAlIaUUpRoFUsyaBZHQJSpINZvDP51fZQoaAZoCWgPQwgcXhCRmvb8v5SGlFKUaBVLMmgWR0CUqOTgVGkOdX2UKGgGaAloD0MIwoU8ghsJFMCUhpRSlGgVSzJoFkdAlKimldkauXV9lChoBmgJaA9DCPF/R1SobgvAlIaUUpRoFUsyaBZHQJSqWlLvkR11fZQoaAZoCWgPQwicFVETfZ4PwJSGlFKUaBVLMmgWR0CUqhur6tT2dX2UKGgGaAloD0MILJs5JLWwAsCUhpRSlGgVSzJoFkdAlKnfUe+23XV9lChoBmgJaA9DCEaYolwaPwvAlIaUUpRoFUsyaBZHQJSpoOqebut1fZQoaAZoCWgPQwiID+z4LxD+v5SGlFKUaBVLMmgWR0CUq2L0jC53dX2UKGgGaAloD0MIFOtU+Z7R/7+UhpRSlGgVSzJoFkdAlKsj4gzP8nV9lChoBmgJaA9DCDttjQjGcRTAlIaUUpRoFUsyaBZHQJSq6AmReTp1fZQoaAZoCWgPQwg9RKM7iB0VwJSGlFKUaBVLMmgWR0CUqqns9jgAdX2UKGgGaAloD0MIkWRW73A7/r+UhpRSlGgVSzJoFkdAlKx6uGKyfXV9lChoBmgJaA9DCP1K58OzRBLAlIaUUpRoFUsyaBZHQJSsPImw7kp1fZQoaAZoCWgPQwidZ+xLNp4HwJSGlFKUaBVLMmgWR0CUrABBRhttdX2UKGgGaAloD0MIwtmtZTIMGMCUhpRSlGgVSzJoFkdAlKvCJ0nw5XV9lChoBmgJaA9DCDcz+tFwygbAlIaUUpRoFUsyaBZHQJSthy6tknV1fZQoaAZoCWgPQwgSoKaWrRUGwJSGlFKUaBVLMmgWR0CUrUgyM1jzdX2UKGgGaAloD0MIak5eZALeDsCUhpRSlGgVSzJoFkdAlK0L52yLRHV9lChoBmgJaA9DCLJK6ZleEhjAlIaUUpRoFUsyaBZHQJSszdJrcj91fZQoaAZoCWgPQwidLLXebzQEwJSGlFKUaBVLMmgWR0CUrpr5IpYtdX2UKGgGaAloD0MIXoO+9PZXGMCUhpRSlGgVSzJoFkdAlK5cIu5BknV9lChoBmgJaA9DCCi5wyYyMwrAlIaUUpRoFUsyaBZHQJSuIIBzV+Z1fZQoaAZoCWgPQwiEfqZet4gAwJSGlFKUaBVLMmgWR0CUreKMNtqIdX2UKGgGaAloD0MIFNGvrZ8eCcCUhpRSlGgVSzJoFkdAlK+YtxuKoHV9lChoBmgJaA9DCDxmoDL+PRHAlIaUUpRoFUsyaBZHQJSvWeAd4ml1fZQoaAZoCWgPQwjT2cngKBkKwJSGlFKUaBVLMmgWR0CUrx2Dxsl+dX2UKGgGaAloD0MI4biMmxqo/r+UhpRSlGgVSzJoFkdAlK7fTb349HV9lChoBmgJaA9DCJDZWfROJQfAlIaUUpRoFUsyaBZHQJSwo9JSR8t1fZQoaAZoCWgPQwgMeQQ3UnYGwJSGlFKUaBVLMmgWR0CUsGUWVNYbdX2UKGgGaAloD0MILEZda+8zB8CUhpRSlGgVSzJoFkdAlLAotxuKoHV9lChoBmgJaA9DCBb59UNs8AXAlIaUUpRoFUsyaBZHQJSv6yhSLqF1fZQoaAZoCWgPQwjri4S2nAv5v5SGlFKUaBVLMmgWR0CUsaojv/ipdX2UKGgGaAloD0MIOGvwvio3AsCUhpRSlGgVSzJoFkdAlLFrZ8KG+XV9lChoBmgJaA9DCCv52F2gxAbAlIaUUpRoFUsyaBZHQJSxLxoZhrp1fZQoaAZoCWgPQwgnFviKbu0SwJSGlFKUaBVLMmgWR0CUsPECeVcEdX2UKGgGaAloD0MIb0p5rYRu/b+UhpRSlGgVSzJoFkdAlLLGixmkFnV9lChoBmgJaA9DCMkE/BpJogzAlIaUUpRoFUsyaBZHQJSyh7SiM5x1fZQoaAZoCWgPQwi7DWq/tZMAwJSGlFKUaBVLMmgWR0CUsktsvZh8dX2UKGgGaAloD0MIfZdSl4zDEcCUhpRSlGgVSzJoFkdAlLIN6cAimnV9lChoBmgJaA9DCGHEPgEUowbAlIaUUpRoFUsyaBZHQJSzy6UaAFx1fZQoaAZoCWgPQwgWiQlq+MYSwJSGlFKUaBVLMmgWR0CUs4zpHI6sdX2UKGgGaAloD0MIYVERp5McEsCUhpRSlGgVSzJoFkdAlLNQnQY1pHV9lChoBmgJaA9DCAe2SrA4fAvAlIaUUpRoFUsyaBZHQJSzEw482aV1fZQoaAZoCWgPQwhmvRjKiZYJwJSGlFKUaBVLMmgWR0CUtNcY64lQdX2UKGgGaAloD0MIpfeNrz0zEMCUhpRSlGgVSzJoFkdAlLSYQWepXXV9lChoBmgJaA9DCMjO29jsaATAlIaUUpRoFUsyaBZHQJS0W+8Gs3h1fZQoaAZoCWgPQwh8DFacai0RwJSGlFKUaBVLMmgWR0CUtB4wyqMndX2UKGgGaAloD0MIYDqt26B2AsCUhpRSlGgVSzJoFkdAlLXB33YcvXV9lChoBmgJaA9DCGDpfHiWEBHAlIaUUpRoFUsyaBZHQJS1g0ALiMp1fZQoaAZoCWgPQwiP4EbKFikRwJSGlFKUaBVLMmgWR0CUtUbd8Aq/dX2UKGgGaAloD0MIsBu2LcqMCsCUhpRSlGgVSzJoFkdAlLUIrvsqrnV9lChoBmgJaA9DCDuL3qmAmwXAlIaUUpRoFUsyaBZHQJS2qnR9gF51fZQoaAZoCWgPQwiiCn+GN2sKwJSGlFKUaBVLMmgWR0CUtmuRs/IKdX2UKGgGaAloD0MIWTMyyF1kDcCUhpRSlGgVSzJoFkdAlLYvGp++d3V9lChoBmgJaA9DCIrlllZD4vu/lIaUUpRoFUsyaBZHQJS18N6PbPB1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae32ccbd9c6ac35eebf763e2c5004749aca66b0c05117220924668871f4d967a
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3a637ac5889353f7ce0ea7536630fbe2f03f2a6d5865a127a25ceb93f929d58
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-46-generic-x86_64-with-glibc2.35 # 47~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Jun 21 15:35:31 UTC 2
|
2 |
+
- Python: 3.11.3
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.1
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0ef413f6a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0ef4133880>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689804975859388993, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MIlQGXAIkBUwCUToWUKYwBX5SFlIxiL2hvbWUvYXJyYW4vaHVnZ2luZ2ZhY2UvUkwtVTYvbXllbnYvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGIvaG9tZS9hcnJhbi9odWdnaW5nZmFjZS9STC1VNi9teWVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkF67PvO0Xbz6eA4/kF67PvO0Xbz6eA4/kF67PvO0Xbz6eA4/kF67PvO0Xbz6eA4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAix1fvzIXHz9vK8k/i5elvyYVgr8e5T8/aTsGP2Y2vrtPqqO/ty3iPjbFi78s+0W/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACQXrs+87RdvPp4Dj8dJJU8fBPEurFtcDyQXrs+87RdvPp4Dj8dJJU8fBPEurFtcDyQXrs+87RdvPp4Dj8dJJU8fBPEurFtcDyQXrs+87RdvPp4Dj8dJJU8fBPEurFtcDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.36595583 -0.01353191 0.55653346]\n [ 0.36595583 -0.01353191 0.55653346]\n [ 0.36595583 -0.01353191 0.55653346]\n [ 0.36595583 -0.01353191 0.55653346]]", "desired_goal": "[[-0.87154454 0.6214477 1.571638 ]\n [-1.2936872 -1.0162704 0.7495898 ]\n [ 0.524344 -0.00580482 -1.2786349 ]\n [ 0.44175503 -1.0919559 -0.7733638 ]]", "observation": "[[ 0.36595583 -0.01353191 0.55653346 0.0182057 -0.00149594 0.01467459]\n [ 0.36595583 -0.01353191 0.55653346 0.0182057 -0.00149594 0.01467459]\n [ 0.36595583 -0.01353191 0.55653346 0.0182057 -0.00149594 0.01467459]\n [ 0.36595583 -0.01353191 0.55653346 0.0182057 -0.00149594 0.01467459]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAnMGNvUIKJr0QcMI9at+MvS8DsjyZI4A+OVnpPGHvmD0/B0E8SiMDPkKgWj1X/mc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.06921694 -0.04053713 0.0949403 ]\n [-0.0687855 0.02173003 0.2502716 ]\n [ 0.02848493 0.07467533 0.01178151]\n [ 0.1280643 0.05337549 0.22655617]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcTjzqzngEcCUhpRSlIwBbJRLMowBdJRHQJSd3IxQBPt1fZQoaAZoCWgPQwj93TtqTNgQwJSGlFKUaBVLMmgWR0CUnZ5Y5ksjdX2UKGgGaAloD0MInmLVIMztAcCUhpRSlGgVSzJoFkdAlJ1iAc1fmnV9lChoBmgJaA9DCNsYO+ElmAPAlIaUUpRoFUsyaBZHQJSdI8aGYa51fZQoaAZoCWgPQwhlwi/186YdwJSGlFKUaBVLMmgWR0CUntETQE6ldX2UKGgGaAloD0MI+dnIdVMqC8CUhpRSlGgVSzJoFkdAlJ6SJGe+VXV9lChoBmgJaA9DCK1rtBzoQQLAlIaUUpRoFUsyaBZHQJSeVZ9uxbB1fZQoaAZoCWgPQwju0LAYda0EwJSGlFKUaBVLMmgWR0CUnhc9W6sidX2UKGgGaAloD0MIwVQzayngC8CUhpRSlGgVSzJoFkdAlJ/lQyhzvXV9lChoBmgJaA9DCOrr+Zrl0gvAlIaUUpRoFUsyaBZHQJSfpmthd+p1fZQoaAZoCWgPQwjJWdjTDj8HwJSGlFKUaBVLMmgWR0CUn2ohY/3WdX2UKGgGaAloD0MIisvxCkRP/7+UhpRSlGgVSzJoFkdAlJ8spG4I8nV9lChoBmgJaA9DCCZUcHhBBP2/lIaUUpRoFUsyaBZHQJSg9wiqyW11fZQoaAZoCWgPQwitw9FVunsAwJSGlFKUaBVLMmgWR0CUoLgxagVXdX2UKGgGaAloD0MIlfCEXn8SEMCUhpRSlGgVSzJoFkdAlKB8figkC3V9lChoBmgJaA9DCLXGoBNCJxTAlIaUUpRoFUsyaBZHQJSgPkuHvc91fZQoaAZoCWgPQwjy7V2DvlQLwJSGlFKUaBVLMmgWR0CUoguEEkjYdX2UKGgGaAloD0MIwi/186biEcCUhpRSlGgVSzJoFkdAlKHMqJ/G2nV9lChoBmgJaA9DCHUeFf939BnAlIaUUpRoFUsyaBZHQJShkGQjlgd1fZQoaAZoCWgPQwi5T44CRAEMwJSGlFKUaBVLMmgWR0CUoVJkoWpIdX2UKGgGaAloD0MIyTocXaU7/7+UhpRSlGgVSzJoFkdAlKMuRoysS3V9lChoBmgJaA9DCKyL22gA7wPAlIaUUpRoFUsyaBZHQJSi774zrNZ1fZQoaAZoCWgPQwhAwjBgyVUOwJSGlFKUaBVLMmgWR0CUorNsnAqNdX2UKGgGaAloD0MIGHrE6LnFAcCUhpRSlGgVSzJoFkdAlKJ19BrvcHV9lChoBmgJaA9DCMWScvc5Pvu/lIaUUpRoFUsyaBZHQJSkO9zwMH91fZQoaAZoCWgPQwiCdLFppVADwJSGlFKUaBVLMmgWR0CUo/y1/lQudX2UKGgGaAloD0MI8parH5vkB8CUhpRSlGgVSzJoFkdAlKPAVTJhfHV9lChoBmgJaA9DCO2cZoF2RxfAlIaUUpRoFUsyaBZHQJSjgjs2NvR1fZQoaAZoCWgPQwikjLgANKoGwJSGlFKUaBVLMmgWR0CUpVAzpHI7dX2UKGgGaAloD0MIMbH5uDb0BMCUhpRSlGgVSzJoFkdAlKURStNi6XV9lChoBmgJaA9DCPipKjQQyxDAlIaUUpRoFUsyaBZHQJSk1QDV6NV1fZQoaAZoCWgPQwg50a5Cyh8QwJSGlFKUaBVLMmgWR0CUpJbgjyFxdX2UKGgGaAloD0MICeBm8WKREMCUhpRSlGgVSzJoFkdAlKZmTcIqsnV9lChoBmgJaA9DCFiQZiyaLgDAlIaUUpRoFUsyaBZHQJSmJ3pwCKd1fZQoaAZoCWgPQwhe2nBYGigUwJSGlFKUaBVLMmgWR0CUpesbvPTodX2UKGgGaAloD0MITUpBt5cUBsCUhpRSlGgVSzJoFkdAlKWtTLns9nV9lChoBmgJaA9DCK67eapDDgXAlIaUUpRoFUsyaBZHQJSnVg/keZJ1fZQoaAZoCWgPQwg1KnCyDSwTwJSGlFKUaBVLMmgWR0CUpxc6NlyzdX2UKGgGaAloD0MIjV2iemugCMCUhpRSlGgVSzJoFkdAlKbaqGUOeHV9lChoBmgJaA9DCO5e7pOjUBDAlIaUUpRoFUsyaBZHQJSmnI/7iyZ1fZQoaAZoCWgPQwj9aaM6HUgAwJSGlFKUaBVLMmgWR0CUqFeT3Zf2dX2UKGgGaAloD0MIr5P6srQzC8CUhpRSlGgVSzJoFkdAlKgYePq9oXV9lChoBmgJaA9DCJW2uMZn8gbAlIaUUpRoFUsyaBZHQJSn3Fl05lx1fZQoaAZoCWgPQwjhKeRKPQsNwJSGlFKUaBVLMmgWR0CUp55D7ZWadX2UKGgGaAloD0MIhq5EoPpHEMCUhpRSlGgVSzJoFkdAlKlf3ai9I3V9lChoBmgJaA9DCBMLfEW3PgHAlIaUUpRoFUsyaBZHQJSpINZvDP51fZQoaAZoCWgPQwgcXhCRmvb8v5SGlFKUaBVLMmgWR0CUqOTgVGkOdX2UKGgGaAloD0MIwoU8ghsJFMCUhpRSlGgVSzJoFkdAlKimldkauXV9lChoBmgJaA9DCPF/R1SobgvAlIaUUpRoFUsyaBZHQJSqWlLvkR11fZQoaAZoCWgPQwicFVETfZ4PwJSGlFKUaBVLMmgWR0CUqhur6tT2dX2UKGgGaAloD0MILJs5JLWwAsCUhpRSlGgVSzJoFkdAlKnfUe+23XV9lChoBmgJaA9DCEaYolwaPwvAlIaUUpRoFUsyaBZHQJSpoOqebut1fZQoaAZoCWgPQwiID+z4LxD+v5SGlFKUaBVLMmgWR0CUq2L0jC53dX2UKGgGaAloD0MIFOtU+Z7R/7+UhpRSlGgVSzJoFkdAlKsj4gzP8nV9lChoBmgJaA9DCDttjQjGcRTAlIaUUpRoFUsyaBZHQJSq6AmReTp1fZQoaAZoCWgPQwg9RKM7iB0VwJSGlFKUaBVLMmgWR0CUqqns9jgAdX2UKGgGaAloD0MIkWRW73A7/r+UhpRSlGgVSzJoFkdAlKx6uGKyfXV9lChoBmgJaA9DCP1K58OzRBLAlIaUUpRoFUsyaBZHQJSsPImw7kp1fZQoaAZoCWgPQwidZ+xLNp4HwJSGlFKUaBVLMmgWR0CUrABBRhttdX2UKGgGaAloD0MIwtmtZTIMGMCUhpRSlGgVSzJoFkdAlKvCJ0nw5XV9lChoBmgJaA9DCDcz+tFwygbAlIaUUpRoFUsyaBZHQJSthy6tknV1fZQoaAZoCWgPQwgSoKaWrRUGwJSGlFKUaBVLMmgWR0CUrUgyM1jzdX2UKGgGaAloD0MIak5eZALeDsCUhpRSlGgVSzJoFkdAlK0L52yLRHV9lChoBmgJaA9DCLJK6ZleEhjAlIaUUpRoFUsyaBZHQJSszdJrcj91fZQoaAZoCWgPQwidLLXebzQEwJSGlFKUaBVLMmgWR0CUrpr5IpYtdX2UKGgGaAloD0MIXoO+9PZXGMCUhpRSlGgVSzJoFkdAlK5cIu5BknV9lChoBmgJaA9DCCi5wyYyMwrAlIaUUpRoFUsyaBZHQJSuIIBzV+Z1fZQoaAZoCWgPQwiEfqZet4gAwJSGlFKUaBVLMmgWR0CUreKMNtqIdX2UKGgGaAloD0MIFNGvrZ8eCcCUhpRSlGgVSzJoFkdAlK+YtxuKoHV9lChoBmgJaA9DCDxmoDL+PRHAlIaUUpRoFUsyaBZHQJSvWeAd4ml1fZQoaAZoCWgPQwjT2cngKBkKwJSGlFKUaBVLMmgWR0CUrx2Dxsl+dX2UKGgGaAloD0MI4biMmxqo/r+UhpRSlGgVSzJoFkdAlK7fTb349HV9lChoBmgJaA9DCJDZWfROJQfAlIaUUpRoFUsyaBZHQJSwo9JSR8t1fZQoaAZoCWgPQwgMeQQ3UnYGwJSGlFKUaBVLMmgWR0CUsGUWVNYbdX2UKGgGaAloD0MILEZda+8zB8CUhpRSlGgVSzJoFkdAlLAotxuKoHV9lChoBmgJaA9DCBb59UNs8AXAlIaUUpRoFUsyaBZHQJSv6yhSLqF1fZQoaAZoCWgPQwjri4S2nAv5v5SGlFKUaBVLMmgWR0CUsaojv/ipdX2UKGgGaAloD0MIOGvwvio3AsCUhpRSlGgVSzJoFkdAlLFrZ8KG+XV9lChoBmgJaA9DCCv52F2gxAbAlIaUUpRoFUsyaBZHQJSxLxoZhrp1fZQoaAZoCWgPQwgnFviKbu0SwJSGlFKUaBVLMmgWR0CUsPECeVcEdX2UKGgGaAloD0MIb0p5rYRu/b+UhpRSlGgVSzJoFkdAlLLGixmkFnV9lChoBmgJaA9DCMkE/BpJogzAlIaUUpRoFUsyaBZHQJSyh7SiM5x1fZQoaAZoCWgPQwi7DWq/tZMAwJSGlFKUaBVLMmgWR0CUsktsvZh8dX2UKGgGaAloD0MIfZdSl4zDEcCUhpRSlGgVSzJoFkdAlLIN6cAimnV9lChoBmgJaA9DCGHEPgEUowbAlIaUUpRoFUsyaBZHQJSzy6UaAFx1fZQoaAZoCWgPQwgWiQlq+MYSwJSGlFKUaBVLMmgWR0CUs4zpHI6sdX2UKGgGaAloD0MIYVERp5McEsCUhpRSlGgVSzJoFkdAlLNQnQY1pHV9lChoBmgJaA9DCAe2SrA4fAvAlIaUUpRoFUsyaBZHQJSzEw482aV1fZQoaAZoCWgPQwhmvRjKiZYJwJSGlFKUaBVLMmgWR0CUtNcY64lQdX2UKGgGaAloD0MIpfeNrz0zEMCUhpRSlGgVSzJoFkdAlLSYQWepXXV9lChoBmgJaA9DCMjO29jsaATAlIaUUpRoFUsyaBZHQJS0W+8Gs3h1fZQoaAZoCWgPQwh8DFacai0RwJSGlFKUaBVLMmgWR0CUtB4wyqMndX2UKGgGaAloD0MIYDqt26B2AsCUhpRSlGgVSzJoFkdAlLXB33YcvXV9lChoBmgJaA9DCGDpfHiWEBHAlIaUUpRoFUsyaBZHQJS1g0ALiMp1fZQoaAZoCWgPQwiP4EbKFikRwJSGlFKUaBVLMmgWR0CUtUbd8Aq/dX2UKGgGaAloD0MIsBu2LcqMCsCUhpRSlGgVSzJoFkdAlLUIrvsqrnV9lChoBmgJaA9DCDuL3qmAmwXAlIaUUpRoFUsyaBZHQJS2qnR9gF51fZQoaAZoCWgPQwiiCn+GN2sKwJSGlFKUaBVLMmgWR0CUtmuRs/IKdX2UKGgGaAloD0MIWTMyyF1kDcCUhpRSlGgVSzJoFkdAlLYvGp++d3V9lChoBmgJaA9DCIrlllZD4vu/lIaUUpRoFUsyaBZHQJS18N6PbPB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.19.0-46-generic-x86_64-with-glibc2.35 # 47~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Jun 21 15:35:31 UTC 2", "Python": "3.11.3", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.25.1", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (627 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.8937002460472288, "std_reward": 0.7089707978399796, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-19T23:40:06.856458"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ecec5350dbe659b6b63521c5811bffd782d840910363c7a3b6d5eeed9355793b
|
3 |
+
size 2387
|