--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer model-index: - name: deberta-v3-base_finetuned_bluegennx_run2.19_2e results: [] --- # deberta-v3-base_finetuned_bluegennx_run2.19_2e This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0201 - Overall Precision: 0.9745 - Overall Recall: 0.9862 - Overall F1: 0.9803 - Overall Accuracy: 0.9952 - Aadhar Card F1: 0.9837 - Age F1: 0.9633 - City F1: 0.9842 - Country F1: 0.9843 - Creditcardcvv F1: 0.9879 - Creditcardnumber F1: 0.9416 - Date F1: 0.9600 - Dateofbirth F1: 0.9023 - Email F1: 0.9900 - Expirydate F1: 0.9912 - Organization F1: 0.9910 - Pan Card F1: 0.9867 - Person F1: 0.9878 - Phonenumber F1: 0.9858 - Pincode F1: 0.9907 - Secondaryaddress F1: 0.9878 - State F1: 0.9909 - Time F1: 0.9820 - Url F1: 0.9949 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Aadhar Card F1 | Age F1 | City F1 | Country F1 | Creditcardcvv F1 | Creditcardnumber F1 | Date F1 | Dateofbirth F1 | Email F1 | Expirydate F1 | Organization F1 | Pan Card F1 | Person F1 | Phonenumber F1 | Pincode F1 | Secondaryaddress F1 | State F1 | Time F1 | Url F1 | |:-------------:|:-----:|:-----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:--------------:|:------:|:-------:|:----------:|:----------------:|:-------------------:|:-------:|:--------------:|:--------:|:-------------:|:---------------:|:-----------:|:---------:|:--------------:|:----------:|:-------------------:|:--------:|:-------:|:------:| | 0.0261 | 1.0 | 15321 | 0.0287 | 0.9619 | 0.9781 | 0.9700 | 0.9934 | 0.9613 | 0.9463 | 0.9541 | 0.9832 | 0.9793 | 0.9270 | 0.9481 | 0.8767 | 0.9793 | 0.9809 | 0.9882 | 0.9751 | 0.9840 | 0.9747 | 0.9835 | 0.9831 | 0.9620 | 0.9780 | 0.9873 | | 0.0152 | 2.0 | 30642 | 0.0201 | 0.9745 | 0.9862 | 0.9803 | 0.9952 | 0.9837 | 0.9633 | 0.9842 | 0.9843 | 0.9879 | 0.9416 | 0.9600 | 0.9023 | 0.9900 | 0.9912 | 0.9910 | 0.9867 | 0.9878 | 0.9858 | 0.9907 | 0.9878 | 0.9909 | 0.9820 | 0.9949 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2