File size: 9,502 Bytes
f225bf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# Copyright 2023-present Daniel Han-Chen & the Unsloth team. All rights reserved.
# Copyright 2024 CATIE. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Modification to the original version from Unsloth:
# - return the z-loss
# - support for torch.compile

import triton
import triton.language as tl
import torch

MAX_FUSED_SIZE = 65536
next_power_of_2 = triton.next_power_of_2

def calculate_settings(n):
    BLOCK_SIZE = next_power_of_2(n)
    if BLOCK_SIZE > MAX_FUSED_SIZE:
        raise RuntimeError(f"Cannot launch Triton kernel since n = {n} exceeds "\
                           f"the maximum CUDA blocksize = {MAX_FUSED_SIZE}.")
    num_warps = 4
    if   BLOCK_SIZE >= 32768: num_warps = 32
    elif BLOCK_SIZE >=  8192: num_warps = 16
    elif BLOCK_SIZE >=  2048: num_warps = 8
    return BLOCK_SIZE, num_warps

@triton.jit
def _cross_entropy_forward(logits_ptr, logits_row_stride,
                           loss_ptr,
                           lse_ptr,
                           labels_ptr,
                           n_cols,
                           BLOCK_SIZE: tl.constexpr,
                           IS_EVEN: tl.constexpr):
    """
        Cross Entropy Loss = 1/n sum [ -yi log(Pi) ]
        Pi = exp(xi) / sum(exp(xi))
        CE_i = -y log(p) = -y log[ exp(x) / sum(exp(x)) ]
             = -y [ x - log[sum(exp(x))] ]
             = y * (log[sum(exp(x))] - x)
        If y == 0: CE_i = 0
        If y == 1: CE_i = logsumexp - x
    """
    row_idx = tl.program_id(0)
    logits_ptr += row_idx * logits_row_stride
    loss_ptr   += row_idx
    lse_ptr    += row_idx
    labels_ptr += row_idx

    col_offsets = tl.arange(0, BLOCK_SIZE)
    mask = col_offsets < n_cols

    # TODO: Fixup int32 locations to int64
    label_idx = tl.load(labels_ptr).to(tl.int32)
    if IS_EVEN:
        logits = tl.load(logits_ptr + col_offsets).to(tl.float32)
    else:
        logits = tl.load(logits_ptr + col_offsets, mask=mask, other=-float("inf")).to(tl.float32)

    max_logits = tl.max(logits, 0)

    # Maximum stops overflow
    lse = tl.log(tl.sum(tl.exp(logits - max_logits), 0)) + max_logits
    tl.store(lse_ptr, lse)

    if label_idx != -100:
        logits_label = tl.load(logits_ptr + label_idx).to(tl.float32)
        loss = lse - logits_label
    else:
        loss = 0.0

    tl.store(loss_ptr, loss)

@triton.jit
def _cross_entropy_backward(logits_ptr, logits_row_stride,
                            dinputs_ptr, dinputs_row_stride,
                            dloss_ptr,  dloss_row_stride,
                            dzloss_ptr, dzloss_row_stride,
                            lse_ptr,
                            labels_ptr,
                            n_cols,
                            BLOCK_SIZE: tl.constexpr,
                            USE_Z_LOSS: tl.constexpr,
                            IS_EVEN: tl.constexpr):
    """
        CE_i = -y log(P) = y * (log[sum(exp(x))] - x)
        dC/dx = d/dx (y * log[sum(exp(x))] - x * y)

        From https://en.wikipedia.org/wiki/LogSumExp
        d/dx logsumexp = exp(x) / sum(exp(x)) = softmax(x)

        dC/dx = y * exp(x) / sum(exp(x)) - d/dx (x * y)
        dC/dx = y * exp[ log[exp(x) / sum(exp(x))] ] using x = exp(log(x)) trick
        dC/dx = y * exp[x - logsumexp] - d/dx (x * y)

        If y == 0: dC/dx = 0
        If y == 1 and x == label: dC/dlabel = exp[x - logsumexp] - 1
        If y == 1 and x != label: dC/dx     = exp[x - logsumexp]
    """

    row_idx = tl.program_id(0)

    logits_ptr += row_idx * logits_row_stride
    dinputs_ptr += row_idx * dinputs_row_stride
    dloss_ptr  += row_idx *  dloss_row_stride
    dzloss_ptr  += row_idx *  dzloss_row_stride
    col_offsets = tl.arange(0, BLOCK_SIZE)
    mask = col_offsets < n_cols
    # TODO: Fixup int32 locations to int64
    label_idx = tl.load(labels_ptr + row_idx).to(tl.int32)

    if label_idx != -100:
        dloss = tl.load(dloss_ptr)
        dzloss = tl.load(dzloss_ptr)
    else:
        dloss = 0.0
        dzloss = 0.0

    if IS_EVEN:
        logits = tl.load(logits_ptr + col_offsets).to(tl.float32)
    else:
        logits = tl.load(logits_ptr + col_offsets, mask=mask, other=0).to(tl.float32)

    lse = tl.load(lse_ptr + row_idx)
    probs = tl.exp(logits - lse)

    probs = tl.where(col_offsets == label_idx, probs - 1.0, probs)
    din = dloss * probs

    # Z_loss
    if USE_Z_LOSS:
        if label_idx != -100:
            dzloss = tl.load(dzloss_ptr)
        else:
            dzloss = 0.0

        row_minus_max = logits
        numerator = tl.exp(row_minus_max)
        denominator = tl.sum(numerator, axis=0)
        softmax_output = numerator / denominator
        din += softmax_output * dzloss

    if IS_EVEN:
        tl.store(dinputs_ptr + col_offsets, din)
    else:
        tl.store(dinputs_ptr + col_offsets, din, mask=mask)


# Wrapper for triton kernel for torch.compile - should be unecessary for PyTorch 2.3 ?
torch.library.define("flasht5::cross_entropy_triton_fwd", "(Tensor logits, Tensor labels, int n_cols, int n_rows, int BLOCK_SIZE, int num_warps) -> (Tensor, Tensor)")

@torch.library.impl("flasht5::cross_entropy_triton_fwd", "default")
def cross_entropy_triton_fwd(logits, labels, n_cols, n_rows, BLOCK_SIZE, num_warps):
    losses    = torch.empty(n_rows, dtype=torch.float32, device=logits.device)
    logsumexp = torch.empty(n_rows, dtype=torch.float32, device=logits.device)

    _cross_entropy_forward[(n_rows,)](
        logits, logits.stride(0),
        losses,
        logsumexp,
        labels,
        n_cols,
        BLOCK_SIZE = BLOCK_SIZE,
        IS_EVEN=((n_cols % BLOCK_SIZE) == 0),
        num_warps  = num_warps,
    )

    return losses, logsumexp


@torch.library.impl_abstract("flasht5::cross_entropy_triton_fwd", cross_entropy_triton_fwd)
def cross_entropy_triton_fwd_abstract(logits, labels, n_cols, n_rows, BLOCK_SIZE, num_warps):
    losses    = torch.empty(n_rows, dtype=torch.float32, device=logits.device)
    logsumexp = torch.empty(n_rows, dtype=torch.float32, device=logits.device)

    return losses, logsumexp

torch.library.define("flasht5::cross_entropy_triton_bwd", "(Tensor dlosses, Tensor dlogsumexp, Tensor logits, Tensor logsumexp, Tensor labels, float z_loss_factor, int n_cols, int n_rows, int BLOCK_SIZE, int num_warps) -> Tensor")

@torch.library.impl("flasht5::cross_entropy_triton_bwd", "default")
def cross_entropy_triton_bwd(dlosses, dlogsumexp, logits, logsumexp, labels, z_loss_factor, n_cols, n_rows, BLOCK_SIZE, num_warps):

    dinputs = torch.empty_like(logits)

    _cross_entropy_backward[(n_rows,)](
        logits,   logits.stride(0),
        dinputs, dinputs.stride(0),
        dlosses, dlosses.stride(0),
        dlogsumexp, dlogsumexp.stride(0),
        logsumexp,
        labels,
        n_cols,
        BLOCK_SIZE = BLOCK_SIZE,
        USE_Z_LOSS = (z_loss_factor != 0.0),
        IS_EVEN=((n_cols % BLOCK_SIZE) == 0),
        num_warps  = num_warps,
    )

    return dinputs


@torch.library.impl_abstract("flasht5::cross_entropy_triton_bwd", cross_entropy_triton_bwd)
def cross_entropy_triton_bwd_abstract(dlosses, dlogsumexp, logits, logsumexp, labels, z_loss_factor, n_cols, n_rows, BLOCK_SIZE, num_warps):
    return torch.empty_like(logits)

class Fast_CrossEntropyLoss(torch.autograd.Function):
    @staticmethod
    def forward(ctx, logits, labels, z_loss_factor):
        n_rows, n_cols = logits.shape
        BLOCK_SIZE, num_warps = calculate_settings(n_cols)

        losses, logsumexp = torch.ops.flasht5.cross_entropy_triton_fwd(
            logits,
            labels,
            n_cols,
            n_rows,
            BLOCK_SIZE = BLOCK_SIZE,
            num_warps  = num_warps
        )

        ctx.BLOCK_SIZE = BLOCK_SIZE
        ctx.num_warps = num_warps
        ctx.z_loss_factor = z_loss_factor
        ctx.save_for_backward(logits, logsumexp, labels)
        return losses, logsumexp

    @staticmethod
    def backward(ctx, dlosses, dlogsumexp):
        logits, logsumexp, labels = ctx.saved_tensors
        n_rows, n_cols = logits.shape

        dinputs = torch.ops.flasht5.cross_entropy_triton_bwd(
            dlosses,
            dlogsumexp,
            logits,
            logsumexp,
            labels,
            ctx.z_loss_factor,
            n_cols,
            n_rows,
            ctx.BLOCK_SIZE,
            ctx.num_warps
        )
        return dinputs, None, None

def fast_cross_entropy_loss(logits, labels, z_loss_factor=0.0):
    """
    Arguments:
        logits: (batch, seq_len, vocab_size)
        labels: (batch, seq_len,)
    Returns:
        losses: float
    """
    batch, seq_len, d = logits.shape
    assert(labels.shape == (batch, seq_len))
    assert (d <= MAX_FUSED_SIZE)

    loss, lse = Fast_CrossEntropyLoss.apply(
        logits.view(batch*seq_len, d),
        labels.view(-1),
        z_loss_factor
    )

    n_items = torch.count_nonzero(labels != -100)

    return loss.sum() / n_items, (z_loss_factor * torch.square(lse).sum()) / n_items