File size: 24,686 Bytes
f225bf9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 |
# Copyright (c) 2023, Tri Dao.
from typing import Optional, Union
import torch
import torch.nn as nn
# isort: off
# We need to import the CUDA kernels after importing torch
import flash_attn_2_cuda as flash_attn_cuda
# isort: on
torch.library.define("fa2::fwd", "(Tensor q, Tensor k, Tensor v, Tensor out, Tensor alibi_slopes, float dropout_p, float softmax_scale, bool causal, int window_size_left, int window_size_right, Tensor attn_bias, bool return_softmax, Tensor gen_) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor)")
@torch.library.impl("fa2::fwd", "default")
def cuda_fa2_fwd(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
out: torch.Tensor,
alibi_slopes: torch.Tensor,
dropout_p: float,
softmax_scale: float,
causal: bool,
window_size_left: int,
window_size_right: int,
attn_bias: torch.Tensor,
return_softmax: bool,
gen_: torch.Tensor,
):
out, q, k, v, out_padded, attn_bias, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd(q, k, v, out, alibi_slopes, dropout_p, softmax_scale, causal, window_size_left, window_size_right, attn_bias, return_softmax, None)
return out, q, k, v, out_padded, attn_bias, softmax_lse, S_dmask, rng_state
@torch.library.impl_abstract("fa2::fwd", cuda_fa2_fwd)
def meta_fa2_fwd(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
out: torch.Tensor,
alibi_slopes: torch.Tensor,
dropout_p: float,
softmax_scale: float,
causal: bool,
window_size_left: int,
window_size_right: int,
attn_bias: torch.Tensor,
return_softmax: bool,
gen_: torch.Tensor
):
round_multiple = lambda x, m: (x + m - 1) // m * m
batch_size = q.shape[0]
seqlen_q = q.shape[1]
seqlen_k = k.shape[1]
num_heads = q.shape[2]
head_dim_og = q.shape[3]
seqlen_q_rounded = round_multiple(seqlen_q, 128)
seqlen_k_rounded = round_multiple(seqlen_k, 128)
seqlen_q_rounded_8 = round_multiple(seqlen_q, 8)
seqlen_k_rounded_8 = round_multiple(seqlen_k, 8)
head_dim = round_multiple(head_dim_og, 8)
if attn_bias is not None:
batch_size_bias = attn_bias.shape[0]
num_heads_bias = attn_bias.shape[1]
return (torch.empty_strided((batch_size, seqlen_q, num_heads, head_dim_og),
(head_dim*num_heads*seqlen_q, head_dim*num_heads, head_dim, 1), device=q.device, dtype=q.dtype), # out
q.new_empty((batch_size, seqlen_q, num_heads, head_dim)), # q_padded
k.new_empty((batch_size, seqlen_k, num_heads, head_dim)), # k_padded
v.new_empty((batch_size, seqlen_k, num_heads, head_dim)), # v_padded
q.new_empty((batch_size, seqlen_q, num_heads, head_dim)), # out_padded
q.new_empty((batch_size_bias, num_heads_bias, seqlen_q_rounded_8, seqlen_k_rounded_8)) if attn_bias is not None else None, # attn_bias
q.new_empty((batch_size, num_heads, seqlen_q)), # softmax_lse
q.new_empty((batch_size, num_heads, seqlen_q_rounded, seqlen_k_rounded)) if return_softmax and (dropout_p > 0) else None, # p
torch.empty((2), dtype=torch.int64, device=q.device) # rng_state
)
torch.library.define("fa2::bwd", "(Tensor dout, Tensor q, Tensor k, Tensor v, Tensor out, Tensor softmax_lse, Tensor dq, Tensor dk, Tensor dv, Tensor alibi_slopes, float dropout_p, float softmax_scale, bool causal, int window_size_left, int window_size_right, bool deterministic, Tensor attn_bias, bool attn_bias_require_grad, Tensor ds, int seqlen_k_orig, Tensor gen_, Tensor rng_state) -> (Tensor, Tensor, Tensor, Tensor, Tensor)")
@torch.library.impl("fa2::bwd", "default")
def cuda_fa2_bwd(
dout: torch.Tensor,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
out: torch.Tensor,
softmax_lse: torch.Tensor,
dq: torch.Tensor,
dk: torch.Tensor,
dv: torch.Tensor,
alibi_slopes: torch.Tensor,
dropout_p: float,
softmax_scale: float,
causal: bool,
window_size_left: int,
window_size_right: int,
deterministic: bool,
attn_bias: torch.Tensor,
attn_bias_require_grad: bool,
ds: torch.Tensor,
seqlen_k_orig: int,
gen_: torch.Tensor,
rng_sate: torch.Tensor
):
dq, dk, dv, ds, s = flash_attn_cuda.bwd(dout, q, k, v, out, softmax_lse, dq, dk, dv, alibi_slopes, dropout_p, softmax_scale, causal, window_size_left, window_size_right, deterministic, attn_bias, attn_bias_require_grad, ds, None, rng_sate)
return dq, dk, dv, ds, s
@torch.library.impl_abstract("fa2::bwd", cuda_fa2_bwd)
def meta_fa2_bwd(
dout: torch.Tensor,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
out: torch.Tensor,
softmax_lse: torch.Tensor,
dq: torch.Tensor,
dk: torch.Tensor,
dv: torch.Tensor,
alibi_slopes: torch.Tensor,
dropout_p: float,
softmax_scale: float,
causal: bool,
window_size_left: int,
window_size_right: int,
deterministic: bool,
attn_bias: torch.Tensor,
attn_bias_require_grad: bool,
ds: torch.Tensor,
seqlen_k_orig: int,
gen_: torch.Tensor,
rng_sate: torch.Tensor
):
round_multiple = lambda x, m: (x + m - 1) // m * m
batch_size = dout.shape[0]
seqlen_q = dout.shape[1]
seqlen_k = k.shape[1]
seqlen_q_rounded = round_multiple(seqlen_q, 128)
num_heads = dout.shape[2]
head_dim_og = dout.shape[3]
head_dim = round_multiple(head_dim_og, 8)
seqlen_q_round8 = round_multiple(seqlen_q, 8)
seqlen_k_round8 = round_multiple(seqlen_k_orig, 8)
if attn_bias is not None:
batch_size_bias = attn_bias.shape[0]
num_heads_bias = attn_bias.shape[1]
return (torch.empty_strided((batch_size, seqlen_q, num_heads, head_dim_og),
(head_dim*num_heads*seqlen_q, head_dim*num_heads, head_dim, 1), device=q.device, dtype=q.dtype),
torch.empty_strided((batch_size, seqlen_k_orig, num_heads, head_dim_og),
(head_dim*num_heads*seqlen_k, head_dim*num_heads, head_dim, 1), device=k.device, dtype=k.dtype),
torch.empty_strided((batch_size, seqlen_k, num_heads, head_dim_og),
(head_dim*num_heads*seqlen_k, head_dim*num_heads, head_dim, 1), device=v.device, dtype=v.dtype),
torch.empty_strided((batch_size_bias, num_heads_bias, seqlen_q, seqlen_k_orig),
(num_heads_bias*seqlen_q_round8*seqlen_k_round8, seqlen_q_round8*seqlen_k_round8, seqlen_q_round8, 1), device=v.device, dtype=v.dtype)
if attn_bias_require_grad else None,
q.new_empty((batch_size, num_heads, seqlen_q_rounded))
)
class FlashAttnQKVPackedFunc(torch.autograd.Function):
@staticmethod
def forward(
ctx,
qkv,
dropout_p,
softmax_scale,
causal,
window_size_left,
window_size_right,
alibi_slopes,
deterministic,
attn_bias,
return_softmax,
return_ds
):
if softmax_scale is None:
softmax_scale = qkv.shape[-1] ** (-0.5)
out, q_padded, k_padded, v_padded, out_padded, attn_bias_padded, softmax_lse, S_dmask, rng_state = torch.ops.fa2.fwd(
qkv[:, :, 0],
qkv[:, :, 1],
qkv[:, :, 2],
None,
alibi_slopes,
dropout_p,
softmax_scale,
causal,
window_size_left,
window_size_right,
attn_bias,
return_softmax and dropout_p > 0,
None
)
## WORKAROUND a Pytorch bug, should use _padded version of the tensors but this is buggy when passing them directly to save_for_backward
## For now, this breaks the backward when headdim is not a multiple of 8 and/or seqlen_q, seqlen_k are not a multiple of 8
## TODO: make the padding here instead
ctx.save_for_backward(qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], out, softmax_lse, rng_state, attn_bias, alibi_slopes)
#ctx.save_for_backward(q_padded, k_padded, v_padded, out_padded, softmax_lse, rng_state, attn_bias_padded, alibi_slopes)
ctx.dropout_p = dropout_p
ctx.softmax_scale = softmax_scale
ctx.causal = causal
ctx.window_size_left = window_size_left
ctx.window_size_right = window_size_right
ctx.deterministic = deterministic
ctx.bias_requires_grad = True if attn_bias is not None and return_ds else False
ctx.seqlen_k_orig = qkv.shape[1]
return out if not return_softmax else (out, softmax_lse, S_dmask)
@staticmethod
def backward(ctx, dout, *args):
q, k, v, out, softmax_lse, rng_state, attn_bias, alibi_slopes = ctx.saved_tensors
dq, dk, dv, ds, _ = torch.ops.fa2.bwd(
dout,
q,
k,
v,
out,
softmax_lse,
None,
None,
None,
alibi_slopes,
ctx.dropout_p,
ctx.softmax_scale,
ctx.causal,
ctx.window_size_left,
ctx.window_size_right,
ctx.deterministic,
attn_bias,
ctx.bias_requires_grad,
None,
ctx.seqlen_k_orig,
None,
rng_state
)
dqkv = torch.stack([dq, dk, dv], dim=2)
return dqkv, None, None, None, None, None, None, None, ds, None, None
class FlashAttnKVPackedFunc(torch.autograd.Function):
@staticmethod
def forward(
ctx,
q,
kv,
dropout_p,
softmax_scale,
causal,
window_size_left,
window_size_right,
alibi_slopes,
deterministic,
attn_bias,
return_softmax,
return_ds
):
if softmax_scale is None:
softmax_scale = q.shape[-1] ** (-0.5)
out, q_padded, k_padded, v_padded, out_padded, attn_bias_padded, softmax_lse, S_dmask, rng_state = torch.ops.fa2.fwd(
q,
kv[:, :, 0],
kv[:, :, 1],
None,
alibi_slopes,
dropout_p,
softmax_scale,
causal,
window_size_left,
window_size_right,
attn_bias,
return_softmax and dropout_p > 0,
None
)
## WORKAROUND a Pytorch bug, should use _padded version of the tensors but this is buggy when passing them directly to save_for_backward
## For now, this breaks the backward when headdim is not a multiple of 8 and/or seqlen_q, seqlen_k are not a multiple of 8
## TODO: make the padding here instead
ctx.save_for_backward(q, kv[:, :, 0], kv[:, :, 1], out, softmax_lse, rng_state, attn_bias, alibi_slopes)
#ctx.save_for_backward(q_padded, k_padded, v_padded, out_padded, softmax_lse, rng_state, attn_bias_padded, alibi_slopes)
ctx.dropout_p = dropout_p
ctx.softmax_scale = softmax_scale
ctx.causal = causal
ctx.window_size_left = window_size_left
ctx.window_size_right = window_size_right
ctx.deterministic = deterministic
ctx.bias_requires_grad = True if attn_bias is not None and return_ds else False
ctx.seqlen_k_orig = kv.shape[1]
return out if not return_softmax else (out, softmax_lse, S_dmask)
@staticmethod
def backward(ctx, dout, *args):
q, k, v, out, softmax_lse, rng_state, attn_bias, alibi_slopes = ctx.saved_tensors
dq, dk, dv, ds, _ = torch.ops.fa2.bwd(
dout,
q,
k,
v,
out,
softmax_lse,
None,
None,
None,
alibi_slopes,
ctx.dropout_p,
ctx.softmax_scale,
ctx.causal,
ctx.window_size_left,
ctx.window_size_right,
ctx.deterministic,
attn_bias,
ctx.bias_requires_grad,
None,
ctx.seqlen_k_orig,
None,
rng_state
)
dkv = torch.stack([dk, dv], dim=2)
return dq, dkv, None, None, None, None, None, None, None, ds, None, None
class FlashAttnFunc(torch.autograd.Function):
@staticmethod
def forward(
ctx,
q,
k,
v,
dropout_p,
softmax_scale,
causal,
window_size_left,
window_size_right,
alibi_slopes,
deterministic,
attn_bias,
return_softmax,
return_ds
):
batch_size, seqlen_q = q.shape[:2]
seqlen_k = k.shape[1]
if softmax_scale is None:
softmax_scale = q.shape[-1] ** (-0.5)
if attn_bias is not None:
attn_bias = attn_bias.to(q.dtype)
out, q_padded, k_padded, v_padded, out_padded, attn_bias_padded, softmax_lse, S_dmask, rng_state = torch.ops.fa2.fwd(
q,
k,
v,
None,
alibi_slopes,
dropout_p,
softmax_scale,
causal,
window_size_left,
window_size_right,
attn_bias,
return_softmax and dropout_p > 0,
None
)
## WORKAROUND a Pytorch bug, should use _padded version of the tensors but this is buggy when passing them directly to save_for_backward
## For now, this breaks the backward when headdim is not a multiple of 8 and/or seqlen_q, seqlen_k are not a multiple of 8
## TODO: make the padding here instead
ctx.save_for_backward(q, k, v, out, softmax_lse, rng_state, attn_bias, alibi_slopes)
#ctx.save_for_backward(q_padded, k_padded, v_padded, out_padded, softmax_lse, rng_state, attn_bias_padded, alibi_slopes)
ctx.dropout_p = dropout_p
ctx.softmax_scale = softmax_scale
ctx.causal = causal
ctx.window_size_left = window_size_left
ctx.window_size_right = window_size_right
ctx.deterministic = deterministic
ctx.bias_requires_grad = True if attn_bias is not None and return_ds else False
ctx.seqlen_k_orig = k.shape[1]
return out if not return_softmax else (out, softmax_lse, S_dmask)
@staticmethod
def backward(ctx, dout, *args):
q, k, v, out, softmax_lse, rng_state, attn_bias, alibi_slopes = ctx.saved_tensors
dout = dout.contiguous()
dq, dk, dv, ds, _ = torch.ops.fa2.bwd(
dout,
q,
k,
v,
out,
softmax_lse,
None,
None,
None,
alibi_slopes,
ctx.dropout_p,
ctx.softmax_scale,
ctx.causal,
ctx.window_size_left,
ctx.window_size_right,
ctx.deterministic,
attn_bias,
ctx.bias_requires_grad,
None,
ctx.seqlen_k_orig,
None,
rng_state
)
return dq, dk, dv, None, None, None, None, None, None, None, ds, None, None
def flash_attn_qkvpacked_func(
qkv,
dropout_p=0.0,
softmax_scale=None,
causal=False,
window_size_left=-1,
window_size_right=-1, # -1 means infinite context window
alibi_slopes=None,
deterministic=False,
attn_bias=None,
return_attn_probs=False,
return_ds=False
):
"""dropout_p should be set to 0.0 during evaluation
If Q, K, V are already stacked into 1 tensor, this function will be faster than
calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
of the gradients of Q, K, V.
For multi-query and grouped-query attention (MQA/GQA), please see
flash_attn_kvpacked_func and flash_attn_func.
If window_size != (-1, -1), implements sliding window local attention. Query at position i
will only attend to keys between [i - window_size[0], i + window_size[1]] inclusive.
Arguments:
qkv: (batch_size, seqlen, 3, nheads, headdim)
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
window_size: (left, right). If not (-1, -1), implements sliding window local attention.
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of (-alibi_slope * |i - j|) is added to
the attention score of query i and key j.
deterministic: bool. Whether to use the deterministic implementation of the backward pass,
which is slightly slower and uses more memory. The forward pass is always deterministic.
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
testing only. The returned probabilities are not guaranteed to be correct
(they might not have the right scaling).
Return:
out: (batch_size, seqlen, nheads, headdim).
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
normalization factor).
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
The output of softmax (possibly with different scaling). It also encodes the dropout
pattern (negative means that location was dropped, nonnegative means it was kept).
"""
return FlashAttnQKVPackedFunc.apply(
qkv,
dropout_p,
softmax_scale,
causal,
window_size_left,
window_size_right,
alibi_slopes,
deterministic,
attn_bias,
return_attn_probs,
return_ds
)
def flash_attn_kvpacked_func(
q,
kv,
dropout_p=0.0,
softmax_scale=None,
causal=False,
window_size_left=-1,
window_size_right=-1, # -1 means infinite context window
alibi_slopes=None,
deterministic=False,
attn_bias=None,
return_attn_probs=False,
return_ds=False
):
"""dropout_p should be set to 0.0 during evaluation
If K, V are already stacked into 1 tensor, this function will be faster than
calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
of the gradients of K, V.
Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
1 1 1 1 0
1 1 1 1 1
If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
0 0
0 0
0 0
1 0
1 1
If the row of the mask is all zero, the output will be zero.
If window_size != (-1, -1), implements sliding window local attention. Query at position i
will only attend to keys between
[i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
Arguments:
q: (batch_size, seqlen, nheads, headdim)
kv: (batch_size, seqlen, 2, nheads_k, headdim)
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
window_size: (left, right). If not (-1, -1), implements sliding window local attention.
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
(-alibi_slope * |i + seqlen_k - seqlen_q - j|)
is added to the attention score of query i and key j.
deterministic: bool. Whether to use the deterministic implementation of the backward pass,
which is slightly slower and uses more memory. The forward pass is always deterministic.
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
testing only. The returned probabilities are not guaranteed to be correct
(they might not have the right scaling).
Return:
out: (batch_size, seqlen, nheads, headdim).
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
normalization factor).
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
The output of softmax (possibly with different scaling). It also encodes the dropout
pattern (negative means that location was dropped, nonnegative means it was kept).
"""
return FlashAttnKVPackedFunc.apply(
q,
kv,
dropout_p,
softmax_scale,
causal,
window_size_left,
window_size_right,
alibi_slopes,
deterministic,
attn_bias,
return_attn_probs,
return_ds
)
def flash_attn_func(
q,
k,
v,
dropout_p=0.0,
softmax_scale=None,
causal=False,
window_size_left=-1,
window_size_right=-1, # -1 means infinite context window
alibi_slopes=None,
deterministic=False,
attn_bias=None,
return_attn_probs=False,
return_ds=False
):
"""dropout_p should be set to 0.0 during evaluation
Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
1 1 1 1 0
1 1 1 1 1
If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
0 0
0 0
0 0
1 0
1 1
If the row of the mask is all zero, the output will be zero.
If window_size != (-1, -1), implements sliding window local attention. Query at position i
will only attend to keys between
[i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
Arguments:
q: (batch_size, seqlen, nheads, headdim)
k: (batch_size, seqlen, nheads_k, headdim)
v: (batch_size, seqlen, nheads_k, headdim)
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
window_size: (left, right). If not (-1, -1), implements sliding window local attention.
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
(-alibi_slope * |i + seqlen_k - seqlen_q - j|)
is added to the attention score of query i and key j.
deterministic: bool. Whether to use the deterministic implementation of the backward pass,
which is slightly slower and uses more memory. The forward pass is always deterministic.
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
testing only. The returned probabilities are not guaranteed to be correct
(they might not have the right scaling).
Return:
out: (batch_size, seqlen, nheads, headdim).
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
normalization factor).
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
The output of softmax (possibly with different scaling). It also encodes the dropout
pattern (negative means that location was dropped, nonnegative means it was kept).
"""
return FlashAttnFunc.apply(
q,
k,
v,
dropout_p,
softmax_scale,
causal,
window_size_left,
window_size_right,
alibi_slopes,
deterministic,
attn_bias,
return_attn_probs,
return_ds,
)
|