File size: 21,388 Bytes
f225bf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
import torch
import math
import triton
import triton.language as tl

from torch.cuda.amp import custom_bwd, custom_fwd

def to_tl_dtype(input):
    if input == torch.float32:
        return tl.float32
    elif input == torch.float16:
        return tl.float16
    elif input == torch.bfloat16:
        return tl.bfloat16
    elif input == torch.int64:
        return tl.int64
    else:
        raise ValueError(f"Unable to convert the given input: '{input}'.")

## Activation function from https://github.com/facebookresearch/xformers/blob/main/xformers/triton/k_activations.py

_kAlpha = math.sqrt(2.0 / math.pi)

def gelu_torch(x):
    """
    GeLU_ activation - Gaussian error linear unit

    .. _GeLU: https://arxiv.org/pdf/1606.08415.pdf
    """
    return 0.5 * x * (1 + torch.tanh(_kAlpha * (x + 0.044715 * x * x * x)))

def gelu_grad_torch(x):
    # CREDITS: Fast implementation proposed in
    # https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/fused_bias_gelu.py#L30
    tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
    return 0.5 * x * (
        (1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)
    ) + 0.5 * (1 + tanh_out)

# ReLU
@triton.jit
def tanh(x):
    # Tanh is just a scaled sigmoid
    return 2 * tl.sigmoid(2 * x) - 1

@triton.jit
def relu(x):
    """
    ReLU_ activation function

    .. _ReLU: https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html
    """
    return tl.where(x >= 0, x, 0.0)


@triton.jit
def relu_grad(x):
    # ReLU is different from other activations
    # in that it does not require the input to retrospectively compute its gradient
    # here the input is the downstream gradient, and we return the upstream gradient directly
    return tl.where(x >= 0, 1.0, 0.0)

@triton.jit
def gelu(x):
    """
    GeLU_ activation - Gaussian error linear unit

    .. _GeLU: https://arxiv.org/pdf/1606.08415.pdf
    """
    return 0.5 * x * (1 + tanh(_kAlpha * (x + 0.044715 * x * x * x)))


@triton.jit
def gelu_grad(x):
    # CREDITS: Fast implementation proposed in
    # https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/fused_bias_gelu.py#L30
    tanh_out = tanh(0.79788456 * x * (1 + 0.044715 * x * x))
    return 0.5 * x * (
        (1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)
    ) + 0.5 * (1 + tanh_out)


@triton.jit
def gated_matmul_fwd(
    # Pointers to matrices
    out, input, w1, w2,
    act_input_1, act_input_2,
    # Matrix dimensions
    M, N, K,
    stride_om,
    stride_im,
    stride_wn,
    # Meta-parameters
    dtype: tl.constexpr,
    BLOCK_M: tl.constexpr, GROUP_M: tl.constexpr,
    BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr,
    USE_GELU: tl.constexpr,
    SAVE_ACTIVATION_INPUTS: tl.constexpr,
    IS_EVEN_MNK: tl.constexpr
):

    """
    Kernel for computing Out = activation(A x W + C)

    - Input has shape (M, K)
    - Weight 1 has shape (K, N)
    - Weight 2 has shape (K, N)
    - Output has shape (M, N)

    """

    pid = tl.program_id(0)

    num_pid_m = tl.cdiv(M, BLOCK_M)  # number of program ids along the M axis
    num_pid_n = tl.cdiv(N, BLOCK_N)  # number of programs ids along the N axis

    num_pid_in_group = GROUP_M * num_pid_n  # number of programs in group
    group_id = pid // num_pid_in_group  # id of the group this program is in
    first_pid_m = group_id * GROUP_M  # row-id of the first program in the group
    GROUP_M = min(
        num_pid_m - first_pid_m, GROUP_M
    )  # if `num_pid_m` isn't divisible by `GROUP_M`, the last group is smaller

    # *within groups*, programs are ordered in a column-major order
    # row-id /col-id of the program in the *launch grid*
    pid_m = first_pid_m + (pid % GROUP_M)
    pid_n = (pid % num_pid_in_group) // GROUP_M

    input_block_ptr = tl.make_block_ptr(
        base=input,
        shape=(M, K),
        strides=(stride_im, 1),
        offsets=(pid_m * BLOCK_M, 0),
        block_shape=(BLOCK_M, BLOCK_K),
        order=(1, 0),
    )

    w1_block_ptr = tl.make_block_ptr(
        base=w1,
        shape=(K, N),
        strides=(1, stride_wn),
        offsets=(0, pid_n * BLOCK_N),
        block_shape=(BLOCK_K, BLOCK_N),
        order=(0, 1),
    )

    w2_block_ptr = tl.make_block_ptr(
        base=w2,
        shape=(K, N),
        strides=(1, stride_wn),
        offsets=(0, pid_n * BLOCK_N),
        block_shape=(BLOCK_K, BLOCK_N),
        order=(0, 1),
    )

    # initialize and iteratively update accumulator
    acc1 = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
    acc2 = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)

    for i in range(0, K, BLOCK_K):

        if IS_EVEN_MNK:
            x = tl.load(input_block_ptr)
            w1_blk = tl.load(w1_block_ptr)
            w2_blk = tl.load(w2_block_ptr)
        else:
            x = tl.load(input_block_ptr, boundary_check=(0, 1))
            w1_blk = tl.load(w1_block_ptr, boundary_check=(0, 1))
            w2_blk = tl.load(w2_block_ptr, boundary_check=(0, 1))

        acc1 += tl.dot(x, w1_blk)
        acc2 += tl.dot(x, w2_blk)

        input_block_ptr = tl.advance(input_block_ptr, (0, BLOCK_K))
        w1_block_ptr = tl.advance(w1_block_ptr, (BLOCK_K, 0))
        w2_block_ptr = tl.advance(w2_block_ptr, (BLOCK_K, 0))

    if SAVE_ACTIVATION_INPUTS:
        act_in_1_ptrs = tl.make_block_ptr(
            base=act_input_1,
            shape=(M, N),
            strides=(stride_om, 1),
            offsets=(pid_m * BLOCK_M, pid_n * BLOCK_N),
            block_shape=(BLOCK_M, BLOCK_N),
            order=(1, 0),
        )

        act_in_2_ptrs = tl.make_block_ptr(
            base=act_input_2,
            shape=(M, N),
            strides=(stride_om, 1),
            offsets=(pid_m * BLOCK_M, pid_n * BLOCK_N),
            block_shape=(BLOCK_M, BLOCK_N),
            order=(1, 0),
        )

        if IS_EVEN_MNK:
            tl.store(act_in_1_ptrs, acc1.to(dtype))
            tl.store(act_in_2_ptrs, acc2.to(dtype))
        else:
            tl.store(act_in_1_ptrs, acc1.to(dtype), boundary_check=(0, 1))
            tl.store(act_in_2_ptrs, acc2.to(dtype), boundary_check=(0, 1))

    if USE_GELU:
        acc1 = gelu(acc1)
    else:
        acc1 = relu(acc1)

    # gating
    acc = acc1 * acc2

    # write back result
    out_ptrs = tl.make_block_ptr(
        base=out,
        shape=(M, N),
        strides=(stride_om, 1),
        offsets=(pid_m * BLOCK_M, pid_n * BLOCK_N),
        block_shape=(BLOCK_M, BLOCK_N),
        order=(1, 0),
    )

    if IS_EVEN_MNK:
        tl.store(out_ptrs, acc.to(dtype))
    else:
        tl.store(out_ptrs, acc.to(dtype), boundary_check=(0, 1))

@triton.jit
def gated_matmul_bwd_ygrad(
    dout,
    y1_grad, y2_grad,
    act_input_1, act_input_2,
    M, N,
    stride_dom,
    # Meta-parameters
    dtype: tl.constexpr,
    BLOCK_M: tl.constexpr,
    BLOCK_N: tl.constexpr,
    USE_GELU: tl.constexpr,
    IS_EVEN_MNK: tl.constexpr):

    """
    Kernel for backward gated MLP

    Ref :
    y2_grad = torch.mul(gelu(x @ w1), dout)
    y1_grad = torch.mul(gelu_grad(x @ w1) * (x @ w2), dout)
    """

    pid_m = tl.program_id(0)
    pid_n = tl.program_id(1)

    # block pointers
    actin_1_block_ptr = tl.make_block_ptr(
        base=act_input_1,
        shape=(M, N),
        strides=(stride_dom, 1),
        offsets=(pid_m * BLOCK_M, pid_n * BLOCK_N),
        block_shape=(BLOCK_M, BLOCK_N),
        order=(1, 0),
    )

    actin_2_block_ptr = tl.make_block_ptr(
        base=act_input_2,
        shape=(M, N),
        strides=(stride_dom, 1),
        offsets=(pid_m * BLOCK_M, pid_n * BLOCK_N),
        block_shape=(BLOCK_M, BLOCK_N),
        order=(1, 0),
    )

    dout_block_ptr = tl.make_block_ptr(
        base=dout,
        shape=(M, N),
        strides=(stride_dom, 1),
        offsets=(pid_m * BLOCK_M, pid_n * BLOCK_N),
        block_shape=(BLOCK_M, BLOCK_N),
        order=(1, 0),
    )

    if IS_EVEN_MNK:
        dout_blk = tl.load(dout_block_ptr)
        actin_1_blk = tl.load(actin_1_block_ptr)
        actin_2_blk = tl.load(actin_2_block_ptr)
    else:
        dout_blk = tl.load(dout_block_ptr, boundary_check=(0, 1))
        actin_1_blk = tl.load(actin_1_block_ptr, boundary_check=(0, 1))
        actin_2_blk = tl.load(actin_2_block_ptr, boundary_check=(0, 1))

    if USE_GELU:
        actin_act = gelu(actin_1_blk)
        actin_act_grad = gelu_grad(actin_1_blk)
    else:
        actin_act = relu(actin_1_blk)
        actin_act_grad = relu_grad(actin_1_blk)

    actin_act *= dout_blk # y2_grad
    actin_act_grad *= actin_2_blk
    actin_act_grad *= dout_blk # y1_grad

    y1_grad_ptrs = tl.make_block_ptr(
        base=y1_grad,
        shape=(M, N),
        strides=(stride_dom, 1),
        offsets=(pid_m * BLOCK_M, pid_n * BLOCK_N),
        block_shape=(BLOCK_M, BLOCK_N),
        order=(1, 0),
    )

    y2_grad_ptrs = tl.make_block_ptr(
        base=y2_grad,
        shape=(M, N),
        strides=(stride_dom, 1),
        offsets=(pid_m * BLOCK_M, pid_n * BLOCK_N),
        block_shape=(BLOCK_M, BLOCK_N),
        order=(1, 0),
    )

    if IS_EVEN_MNK:
        tl.store(y1_grad_ptrs, actin_act_grad.to(dtype))
        tl.store(y2_grad_ptrs, actin_act.to(dtype))
    else:
        tl.store(y1_grad_ptrs, actin_act_grad.to(dtype), boundary_check=(0, 1))
        tl.store(y2_grad_ptrs, actin_act.to(dtype), boundary_check=(0, 1))


@triton.jit
def gated_matmul_bwd_input(
    # Pointers to matrices
    w1, w2, # weights inputs
    y1_grad, y2_grad, # partial computation
    din,  # outputs
    # Matrix dimensions
    M, N, K,
    stride_dom, stride_im,
    stride_wn,
    # Meta-parameters
    dtype: tl.constexpr,
    BLOCK_M: tl.constexpr, GROUP_M: tl.constexpr,
    BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr,
    IS_EVEN_MNK: tl.constexpr
):

    """
    Kernel for backward gated MLP
    We group along the N axis

    Ref :
    x_grad = torch.matmul(y2_grad, w2.t()) + torch.matmul(y1_grad, w1.t())
    """

    pid = tl.program_id(0)

    num_pid_m = tl.cdiv(M, BLOCK_M)  # number of program ids along the M axis
    num_pid_k = tl.cdiv(K, BLOCK_K)  # number of programs ids along the K axis

    num_pid_in_group = GROUP_M * num_pid_k  # number of programs in group
    group_id = pid // num_pid_in_group  # id of the group this program is in
    first_pid_m = group_id * GROUP_M  # row-id of the first program in the group
    GROUP_M = min(
        num_pid_m - first_pid_m, GROUP_M
    )  # if `num_pid_m` isn't divisible by `GROUP_M`, the last group is smaller

    # *within groups*, programs are ordered in a column-major order
    # row-id /col-id of the program in the *launch grid*
    pid_m = first_pid_m + (pid % GROUP_M)
    pid_k = (pid % num_pid_in_group) // GROUP_M

    y1_grad_block_ptr = tl.make_block_ptr(
        base=y1_grad,
        shape=(M, N),
        strides=(stride_dom, 1),
        offsets=(pid_m * BLOCK_M, 0),
        block_shape=(BLOCK_M, BLOCK_N),
        order=(1, 0),
    )

    y2_grad_block_ptr = tl.make_block_ptr(
        base=y2_grad,
        shape=(M, N),
        strides=(stride_dom, 1),
        offsets=(pid_m * BLOCK_M, 0),
        block_shape=(BLOCK_M, BLOCK_N),
        order=(1, 0),
    )

    w1_block_ptr = tl.make_block_ptr(
        base=w1,
        shape=(N, K),
        strides=(stride_wn, 1),
        offsets=(0, pid_k * BLOCK_K),
        block_shape=(BLOCK_N, BLOCK_K),
        order=(1, 0),
    )

    w2_block_ptr = tl.make_block_ptr(
        base=w2,
        shape=(N, K),
        strides=(stride_wn, 1),
        offsets=(0, pid_k * BLOCK_K),
        block_shape=(BLOCK_N, BLOCK_K),
        order=(1, 0),
    )

    # initialize and iteratively update accumulator
    acc_dx = tl.zeros((BLOCK_M, BLOCK_K), dtype=tl.float32)

    for i in range(0, N, BLOCK_N):

        if IS_EVEN_MNK:
            w1_blk = tl.load(w1_block_ptr)
            w2_blk = tl.load(w2_block_ptr)
            y1_grad_blk = tl.load(y1_grad_block_ptr)
            y2_grad_blk = tl.load(y2_grad_block_ptr)
        else:
            w1_blk = tl.load(w1_block_ptr, boundary_check=(0, 1))
            w2_blk = tl.load(w2_block_ptr, boundary_check=(0, 1))
            y1_grad_blk = tl.load(y1_grad_block_ptr, boundary_check=(0, 1))
            y2_grad_blk = tl.load(y2_grad_block_ptr, boundary_check=(0, 1))

        acc_dx += tl.dot(y2_grad_blk, w2_blk)
        acc_dx += tl.dot(y1_grad_blk, w1_blk)

        w1_block_ptr = tl.advance(w1_block_ptr, (BLOCK_N, 0))
        w2_block_ptr = tl.advance(w2_block_ptr, (BLOCK_N, 0))
        y1_grad_block_ptr = tl.advance(y1_grad_block_ptr, (0, BLOCK_N))
        y2_grad_block_ptr = tl.advance(y2_grad_block_ptr, (0, BLOCK_N))

    # write back result
    dx_ptrs = tl.make_block_ptr(
        base=din,
        shape=(M, K),
        strides=(stride_im, 1),
        offsets=(pid_m * BLOCK_M, pid_k * BLOCK_K),
        block_shape=(BLOCK_M, BLOCK_K),
        order=(1, 0),
    )

    if IS_EVEN_MNK:
        tl.store(dx_ptrs, acc_dx.to(dtype))
    else:
        tl.store(dx_ptrs, acc_dx.to(dtype), boundary_check=(0, 1))


@triton.jit
def gated_matmul_bwd_weights(
    # Pointers to matrices
    input,
    y1_grad, y2_grad, # precomputations
    dw1, dw2, # outputs
    # Matrix dimensions
    M, N, K,
    stride_dom, stride_im,
    stride_wn,
    # Meta-parameters
    dtype: tl.constexpr,
    BLOCK_M: tl.constexpr, GROUP_N: tl.constexpr,
    BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr,
    IS_EVEN_MNK: tl.constexpr
):

    """
    Kernel for backward gated MLP
    We group along the M axis

    Ref :
    w1_grad = torch.matmul(y1_grad.t(), x)
    w2_grad = torch.matmul(y2_grad.t(), x)
    """

    pid = tl.program_id(0)

    num_pid_n = tl.cdiv(N, BLOCK_N)  # number of program ids along the M axis
    num_pid_k = tl.cdiv(K, BLOCK_K)  # number of programs ids along the K axis

    num_pid_in_group = GROUP_N * num_pid_k  # number of programs in group
    group_id = pid // num_pid_in_group  # id of the group this program is in
    first_pid_n = group_id * GROUP_N  # row-id of the first program in the group
    GROUP_N = min(
        num_pid_n - first_pid_n, GROUP_N
    )  # if `num_pid_m` isn't divisible by `GROUP_M`, the last group is smaller

    # *within groups*, programs are ordered in a column-major order
    # row-id /col-id of the program in the *launch grid*
    pid_n = first_pid_n + (pid % GROUP_N)
    pid_k = (pid % num_pid_in_group) // GROUP_N

    # block pointers
    y1_grad_block_ptr = tl.make_block_ptr(
        base=y1_grad,
        shape=(N, M),
        strides=(1, stride_dom),
        offsets=(pid_n * BLOCK_N, 0),
        block_shape=(BLOCK_N, BLOCK_M),
        order=(0, 1),
    )

    y2_grad_block_ptr = tl.make_block_ptr(
        base=y2_grad,
        shape=(N, M),
        strides=(1, stride_dom),
        offsets=(pid_n * BLOCK_N, 0),
        block_shape=(BLOCK_N, BLOCK_M),
        order=(0, 1),
    )

    input_block_ptr = tl.make_block_ptr(
        base=input,
        shape=(M, K),
        strides=(stride_im, 1),
        offsets=(0, pid_k * BLOCK_K),
        block_shape=(BLOCK_M, BLOCK_K),
        order=(1, 0),
    )

    ref = tl.load(input + tl.arange(0, 1))

    # initialize and iteratively update accumulator
    acc_dw1 = tl.zeros((BLOCK_N, BLOCK_K), dtype=tl.float32)
    acc_dw2 = tl.zeros((BLOCK_N, BLOCK_K), dtype=tl.float32)

    for i in range(0, M, BLOCK_M):

        if IS_EVEN_MNK:
            y1grad_blk = tl.load(y1_grad_block_ptr)
            y2grad_blk = tl.load(y2_grad_block_ptr)
            x = tl.load(input_block_ptr)
        else:
            y1grad_blk = tl.load(y1_grad_block_ptr, boundary_check=(0, 1))
            y2grad_blk = tl.load(y2_grad_block_ptr, boundary_check=(0, 1))
            x = tl.load(input_block_ptr, boundary_check=(0, 1))

        acc_dw1 += tl.dot(y1grad_blk, x)
        acc_dw2 += tl.dot(y2grad_blk, x)

        y1_grad_block_ptr = tl.advance(y1_grad_block_ptr, (0, BLOCK_M))
        y2_grad_block_ptr = tl.advance(y2_grad_block_ptr, (0, BLOCK_M))
        input_block_ptr = tl.advance(input_block_ptr, (BLOCK_M, 0))

    # write back result
    dw1_ptrs = tl.make_block_ptr(
        base=dw1,
        shape=(N, K),
        strides=(stride_wn, 1),
        offsets=(pid_n * BLOCK_N, pid_k * BLOCK_K),
        block_shape=(BLOCK_N, BLOCK_K),
        order=(1, 0),
    )

    dw2_ptrs = tl.make_block_ptr(
        base=dw2,
        shape=(N, K),
        strides=(stride_wn, 1),
        offsets=(pid_n * BLOCK_N, pid_k * BLOCK_K),
        block_shape=(BLOCK_N, BLOCK_K),
        order=(1, 0),
    )

    if IS_EVEN_MNK:
        tl.store(dw1_ptrs, acc_dw1.to(dtype))
        tl.store(dw2_ptrs, acc_dw2.to(dtype))
    else:
        tl.store(dw1_ptrs, acc_dw1.to(dtype), boundary_check=(0, 1))
        tl.store(dw2_ptrs, acc_dw2.to(dtype), boundary_check=(0, 1))


class GatedMLP(torch.autograd.Function):
    @staticmethod
    @custom_fwd
    def forward(ctx, x, w1, w2, use_gelu=True):

        BLOCK_M = 128
        BLOCK_N = 64
        BLOCK_K = 64
        GROUP_M = 8

        SAVE_ACT_IN = x.requires_grad

        if torch.is_autocast_enabled():
            x = x.to(torch.get_autocast_gpu_dtype())
            w1 = w1.to(torch.get_autocast_gpu_dtype())
            w2 = w2.to(torch.get_autocast_gpu_dtype())

        assert x.is_contiguous()
        assert w1.is_contiguous()
        assert w2.is_contiguous()
        assert w1.shape == w2.shape
        assert x.shape[2] == w1.shape[1]
        assert x.shape[2] == w2.shape[1]

        x_ = x if x.ndim == 2 else x.flatten(0, -2)

        M, K = x_.shape
        N, K = w1.shape

        IS_EVEN_MNK = ((M % BLOCK_M) == 0) and ((N % BLOCK_N) == 0) and ((K % BLOCK_K) == 0)

        out = torch.empty((M, N), device=x.device, dtype=x.dtype)

        tl_dtype = to_tl_dtype(x.dtype)

        act_input_1, act_input_2 = None, None
        if SAVE_ACT_IN:
            act_input_1 = torch.empty_like(out)
            act_input_2 = torch.empty_like(out)

        grid = (triton.cdiv(M, BLOCK_M) * triton.cdiv(N, BLOCK_N),)
        gated_matmul_fwd[grid](
            out,
            x_, w1, w2,
            act_input_1, act_input_2,
            M, N, K,
            out.stride(0), x_.stride(0),
            w1.stride(0),
            tl_dtype,
            BLOCK_M, GROUP_M, BLOCK_N, BLOCK_K,
            use_gelu,
            SAVE_ACT_IN,
            IS_EVEN_MNK,
        )

        ctx.save_for_backward(x_, w1, w2, act_input_1, act_input_2)
        ctx.use_gelu = use_gelu
        ctx.is_even_nmk = IS_EVEN_MNK
        ctx.x_shape = x.shape

        out = out if x.ndim == 2 else out.reshape(*x.shape[:-1], N)

        return out

    @staticmethod
    @custom_bwd
    def backward(ctx, dout):
        BLOCK_M = 64
        BLOCK_N = 64
        BLOCK_K = 64
        GROUP_M = 8

        x_, w1, w2, act_input_1, act_input_2 = ctx.saved_tensors

        M, K = x_.shape
        N, K = w1.shape

        tl_dtype = to_tl_dtype(x_.dtype)

        '''
        din = torch.empty_like(x_)
        dw1 = torch.empty_like(w1)
        dw2 = torch.empty_like(w2)

        dout_ = dout if dout.ndim == 2 else dout.flatten(0, -2)

        y1_grad = torch.empty_like(dout_)
        y2_grad = torch.empty_like(dout_)

        grid = (triton.cdiv(M, BLOCK_M), triton.cdiv(N, BLOCK_N))
        gated_matmul_bwd_ygrad[grid](
            dout_,
            y1_grad, y2_grad,
            act_input_1, act_input_2,
            M, N,
            dout_.stride(0),
            # Meta-parameters
            tl_dtype,
            BLOCK_M, BLOCK_N,
            ctx.use_gelu,
            ctx.is_even_nmk)

        grid = (triton.cdiv(M, BLOCK_M) * triton.cdiv(K, BLOCK_K),)
        gated_matmul_bwd_input[grid](
            w1, w2,
            y1_grad, y2_grad,
            din,
            M, N, K,
            dout_.stride(0), x_.stride(0),
            w1.stride(0),
            tl_dtype,
            BLOCK_M, GROUP_M,
            BLOCK_N, BLOCK_K,
            ctx.is_even_nmk)

        # reorder sizes
        BLOCK_M = 64
        BLOCK_N = 64
        grid = (triton.cdiv(N, BLOCK_N) * triton.cdiv(K, BLOCK_K),)
        gated_matmul_bwd_weights[grid](
            x_,
            y1_grad, y2_grad,
            dw1, dw2,
            M, N, K,
            y1_grad.stride(0), x_.stride(0),
            dw1.stride(0),
            tl_dtype,
            BLOCK_M, GROUP_M,
            BLOCK_N, BLOCK_K,
            ctx.is_even_nmk)

        din = din if len(ctx.x_shape) == 2 else din.reshape(ctx.x_shape)
        '''

        dout_ = dout if dout.ndim == 2 else dout.flatten(0, -2)

        y1_grad = torch.empty_like(dout_)
        y2_grad = torch.empty_like(dout_)

        grid = (triton.cdiv(M, BLOCK_M), triton.cdiv(N, BLOCK_N))
        gated_matmul_bwd_ygrad[grid](
            dout_,
            y1_grad, y2_grad,
            act_input_1, act_input_2,
            M, N,
            dout_.stride(0),
            # Meta-parameters
            tl_dtype,
            BLOCK_M, BLOCK_N,
            ctx.use_gelu,
            ctx.is_even_nmk)

        #y2_grad = torch.mul(gelu_torch(x_ @ w1.t()), dout_)
        #y1_grad = torch.mul(gelu_grad_torch(x_ @ w1.t()) * (x_ @ w2.t()), dout_)

        din = torch.matmul(y2_grad, w2) + torch.matmul(y1_grad, w1)
        dw1 = torch.matmul(y1_grad.t(), x_)
        dw2 = torch.matmul(y2_grad.t(), x_)

        din = din if len(ctx.x_shape) == 2 else din.reshape(ctx.x_shape)

        return din, dw1, dw2, None

gated_mlp = GatedMLP.apply