|
/usr/local/lib/python3.10/dist-packages/lightning_fabric/connector.py:558: `precision=16` is supported for historical reasons but its usage is discouraged. Please set your precision to 16-mixed instead! |
|
INFO:pytorch_lightning.utilities.rank_zero:Using 16bit Automatic Mixed Precision (AMP) |
|
INFO:pytorch_lightning.utilities.rank_zero:GPU available: True (cuda), used: True |
|
INFO:pytorch_lightning.utilities.rank_zero:TPU available: False, using: 0 TPU cores |
|
INFO:pytorch_lightning.utilities.rank_zero:IPU available: False, using: 0 IPUs |
|
INFO:pytorch_lightning.utilities.rank_zero:HPU available: False, using: 0 HPUs |
|
/usr/local/lib/python3.10/dist-packages/pytorch_lightning/loggers/wandb.py:389: There is a wandb run already in progress and newly created instances of `WandbLogger` will reuse this run. If this is not desired, call `wandb.finish()` before instantiating `WandbLogger`. |
|
INFO:pytorch_lightning.accelerators.cuda:LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] |
|
INFO:pytorch_lightning.callbacks.model_summary: |
|
| Name | Type | Params |
|
----------------------------------------------------------------- |
|
0 | train_acc | MulticlassAccuracy | 0 |
|
1 | valid_acc | MulticlassAccuracy | 0 |
|
2 | test_acc | MulticlassAccuracy | 0 |
|
3 | val_f1_score | MulticlassF1Score | 0 |
|
4 | train_f1_score | MulticlassF1Score | 0 |
|
5 | test_f1_score | MulticlassF1Score | 0 |
|
6 | confusion_matrix | MulticlassConfusionMatrix | 0 |
|
7 | gcn | SGCN | 36.5 K |
|
8 | encoder | MoE_TransformerGraphEncoder | 6.8 M |
|
9 | out | Sequential | 18.6 K |
|
----------------------------------------------------------------- |
|
6.9 M Trainable params |
|
0 Non-trainable params |
|
6.9 M Total params |
|
27.527 Total estimated model params size (MB) |
|
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved. New best score: 0.263 |
|
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.135 >= min_delta = 1e-08. New best score: 0.398 |
|
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.008 >= min_delta = 1e-08. New best score: 0.406 |
|
Epoch 00006: reducing learning rate of group 0 to 5.0000e-04. |
|
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.471 >= min_delta = 1e-08. New best score: 0.877 |
|
Epoch 00010: reducing learning rate of group 0 to 2.5000e-04. |
|
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.016 >= min_delta = 1e-08. New best score: 0.893 |
|
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.016 >= min_delta = 1e-08. New best score: 0.909 |
|
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.006 >= min_delta = 1e-08. New best score: 0.915 |
|
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.006 >= min_delta = 1e-08. New best score: 0.920 |
|
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.002 >= min_delta = 1e-08. New best score: 0.923 |
|
Epoch 00017: reducing learning rate of group 0 to 1.2500e-04. |
|
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.002 >= min_delta = 1e-08. New best score: 0.925 |
|
Epoch 00020: reducing learning rate of group 0 to 6.2500e-05. |
|
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.002 >= min_delta = 1e-08. New best score: 0.927 |
|
Epoch 00023: reducing learning rate of group 0 to 3.1250e-05. |
|
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.003 >= min_delta = 1e-08. New best score: 0.930 |
|
Epoch 00026: reducing learning rate of group 0 to 1.5625e-05. |
|
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.003 >= min_delta = 1e-08. New best score: 0.933 |
|
Epoch 00029: reducing learning rate of group 0 to 7.8125e-06. |
|
Epoch 00032: reducing learning rate of group 0 to 5.0000e-06. |
|
INFO:pytorch_lightning.callbacks.early_stopping:Monitored metric val_accuracy did not improve in the last 50 records. Best score: 0.933. Signaling Trainer to stop. |
|
model_args ModelArgs : ModelArgs(dim=128, hidden_dim=512, norm_eps=1e-05, moe=MoeArgs(num_experts=8, num_experts_per_tok=2), max_batch_size=32, max_seq_len=8) |
|
model_args =: ModelArgs(dim=128, hidden_dim=512, norm_eps=1e-05, moe=MoeArgs(num_experts=8, num_experts_per_tok=2), max_batch_size=32, max_seq_len=8) |
|
model_args ModelArgs : ModelArgs(dim=128, hidden_dim=512, norm_eps=1e-05, moe=MoeArgs(num_experts=8, num_experts_per_tok=2), max_batch_size=32, max_seq_len=8) |
|
model_args =: ModelArgs(dim=128, hidden_dim=512, norm_eps=1e-05, moe=MoeArgs(num_experts=8, num_experts_per_tok=2), max_batch_size=32, max_seq_len=8) |
|
model_args ModelArgs : ModelArgs(dim=128, hidden_dim=512, norm_eps=1e-05, moe=MoeArgs(num_experts=8, num_experts_per_tok=2), max_batch_size=32, max_seq_len=8) |
|
model_args =: ModelArgs(dim=128, hidden_dim=512, norm_eps=1e-05, moe=MoeArgs(num_experts=8, num_experts_per_tok=2), max_batch_size=32, max_seq_len=8) |
|
model_args ModelArgs : ModelArgs(dim=128, hidden_dim=512, norm_eps=1e-05, moe=MoeArgs(num_experts=8, num_experts_per_tok=2), max_batch_size=32, max_seq_len=8) |
|
model_args =: ModelArgs(dim=128, hidden_dim=512, norm_eps=1e-05, moe=MoeArgs(num_experts=8, num_experts_per_tok=2), max_batch_size=32, max_seq_len=8) |
|
INFO:pytorch_lightning.accelerators.cuda:LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] |
|
0 -> ('', MoE_GCN( |
|
(train_acc): MulticlassAccuracy() |
|
(valid_acc): MulticlassAccuracy() |
|
(test_acc): MulticlassAccuracy() |
|
(val_f1_score): MulticlassF1Score() |
|
(train_f1_score): MulticlassF1Score() |
|
(test_f1_score): MulticlassF1Score() |
|
(confusion_matrix): MulticlassConfusionMatrix() |
|
(gcn): SGCN( |
|
(conv_layers): ModuleList( |
|
(0): unit_gcn( |
|
(conv_list): ModuleList( |
|
(0-2): 3 x Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(act): Mish() |
|
) |
|
(1): unit_gcn( |
|
(conv_list): ModuleList( |
|
(0-2): 3 x Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(act): Mish() |
|
) |
|
(2): unit_gcn( |
|
(conv_list): ModuleList( |
|
(0-2): 3 x Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(act): Mish() |
|
) |
|
) |
|
) |
|
(encoder): MoE_TransformerGraphEncoder( |
|
(layers): ModuleList( |
|
(0-3): 4 x MoE_TransformerGraphEncoderLayer( |
|
(attention): Residual( |
|
(sublayer): MultiHeadAttention( |
|
(heads): ModuleList( |
|
(0-7): 8 x AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
) |
|
(linear): Linear(in_features=256, out_features=128, bias=True) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(feed_forward): Residual( |
|
(sublayer): MoeLayer( |
|
(experts): ModuleList( |
|
(0-7): 8 x FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
) |
|
) |
|
(gate): Linear(in_features=128, out_features=8, bias=False) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
) |
|
) |
|
(positional_encoder): PositionalEncoder( |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
) |
|
) |
|
(out): Sequential( |
|
(0): Linear(in_features=128, out_features=128, bias=True) |
|
(1): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(2): Linear(in_features=128, out_features=14, bias=True) |
|
) |
|
)) |
|
1 -> ('train_acc', MulticlassAccuracy()) |
|
2 -> ('valid_acc', MulticlassAccuracy()) |
|
3 -> ('test_acc', MulticlassAccuracy()) |
|
4 -> ('val_f1_score', MulticlassF1Score()) |
|
5 -> ('train_f1_score', MulticlassF1Score()) |
|
6 -> ('test_f1_score', MulticlassF1Score()) |
|
7 -> ('confusion_matrix', MulticlassConfusionMatrix()) |
|
8 -> ('gcn', SGCN( |
|
(conv_layers): ModuleList( |
|
(0): unit_gcn( |
|
(conv_list): ModuleList( |
|
(0-2): 3 x Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(act): Mish() |
|
) |
|
(1): unit_gcn( |
|
(conv_list): ModuleList( |
|
(0-2): 3 x Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(act): Mish() |
|
) |
|
(2): unit_gcn( |
|
(conv_list): ModuleList( |
|
(0-2): 3 x Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(act): Mish() |
|
) |
|
) |
|
)) |
|
9 -> ('gcn.conv_layers', ModuleList( |
|
(0): unit_gcn( |
|
(conv_list): ModuleList( |
|
(0-2): 3 x Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(act): Mish() |
|
) |
|
(1): unit_gcn( |
|
(conv_list): ModuleList( |
|
(0-2): 3 x Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(act): Mish() |
|
) |
|
(2): unit_gcn( |
|
(conv_list): ModuleList( |
|
(0-2): 3 x Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(act): Mish() |
|
) |
|
)) |
|
10 -> ('gcn.conv_layers.0', unit_gcn( |
|
(conv_list): ModuleList( |
|
(0-2): 3 x Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(act): Mish() |
|
)) |
|
11 -> ('gcn.conv_layers.0.conv_list', ModuleList( |
|
(0-2): 3 x Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
12 -> ('gcn.conv_layers.0.conv_list.0', Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
13 -> ('gcn.conv_layers.0.conv_list.1', Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
14 -> ('gcn.conv_layers.0.conv_list.2', Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
15 -> ('gcn.conv_layers.0.bn', BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)) |
|
16 -> ('gcn.conv_layers.0.act', Mish()) |
|
17 -> ('gcn.conv_layers.1', unit_gcn( |
|
(conv_list): ModuleList( |
|
(0-2): 3 x Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(act): Mish() |
|
)) |
|
18 -> ('gcn.conv_layers.1.conv_list', ModuleList( |
|
(0-2): 3 x Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
19 -> ('gcn.conv_layers.1.conv_list.0', Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1))) |
|
20 -> ('gcn.conv_layers.1.conv_list.1', Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1))) |
|
21 -> ('gcn.conv_layers.1.conv_list.2', Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1))) |
|
22 -> ('gcn.conv_layers.1.bn', BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)) |
|
23 -> ('gcn.conv_layers.1.act', Mish()) |
|
24 -> ('gcn.conv_layers.2', unit_gcn( |
|
(conv_list): ModuleList( |
|
(0-2): 3 x Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(act): Mish() |
|
)) |
|
25 -> ('gcn.conv_layers.2.conv_list', ModuleList( |
|
(0-2): 3 x Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
26 -> ('gcn.conv_layers.2.conv_list.0', Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1))) |
|
27 -> ('gcn.conv_layers.2.conv_list.1', Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1))) |
|
28 -> ('gcn.conv_layers.2.conv_list.2', Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1))) |
|
29 -> ('gcn.conv_layers.2.bn', BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)) |
|
30 -> ('gcn.conv_layers.2.act', Mish()) |
|
31 -> ('encoder', MoE_TransformerGraphEncoder( |
|
(layers): ModuleList( |
|
(0-3): 4 x MoE_TransformerGraphEncoderLayer( |
|
(attention): Residual( |
|
(sublayer): MultiHeadAttention( |
|
(heads): ModuleList( |
|
(0-7): 8 x AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
) |
|
(linear): Linear(in_features=256, out_features=128, bias=True) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(feed_forward): Residual( |
|
(sublayer): MoeLayer( |
|
(experts): ModuleList( |
|
(0-7): 8 x FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
) |
|
) |
|
(gate): Linear(in_features=128, out_features=8, bias=False) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
) |
|
) |
|
(positional_encoder): PositionalEncoder( |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
) |
|
)) |
|
32 -> ('encoder.layers', ModuleList( |
|
(0-3): 4 x MoE_TransformerGraphEncoderLayer( |
|
(attention): Residual( |
|
(sublayer): MultiHeadAttention( |
|
(heads): ModuleList( |
|
(0-7): 8 x AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
) |
|
(linear): Linear(in_features=256, out_features=128, bias=True) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(feed_forward): Residual( |
|
(sublayer): MoeLayer( |
|
(experts): ModuleList( |
|
(0-7): 8 x FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
) |
|
) |
|
(gate): Linear(in_features=128, out_features=8, bias=False) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
) |
|
)) |
|
33 -> ('encoder.layers.0', MoE_TransformerGraphEncoderLayer( |
|
(attention): Residual( |
|
(sublayer): MultiHeadAttention( |
|
(heads): ModuleList( |
|
(0-7): 8 x AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
) |
|
(linear): Linear(in_features=256, out_features=128, bias=True) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(feed_forward): Residual( |
|
(sublayer): MoeLayer( |
|
(experts): ModuleList( |
|
(0-7): 8 x FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
) |
|
) |
|
(gate): Linear(in_features=128, out_features=8, bias=False) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
)) |
|
34 -> ('encoder.layers.0.attention', Residual( |
|
(sublayer): MultiHeadAttention( |
|
(heads): ModuleList( |
|
(0-7): 8 x AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
) |
|
(linear): Linear(in_features=256, out_features=128, bias=True) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
)) |
|
35 -> ('encoder.layers.0.attention.sublayer', MultiHeadAttention( |
|
(heads): ModuleList( |
|
(0-7): 8 x AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
) |
|
(linear): Linear(in_features=256, out_features=128, bias=True) |
|
)) |
|
36 -> ('encoder.layers.0.attention.sublayer.heads', ModuleList( |
|
(0-7): 8 x AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
)) |
|
37 -> ('encoder.layers.0.attention.sublayer.heads.0', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
38 -> ('encoder.layers.0.attention.sublayer.heads.0.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
39 -> ('encoder.layers.0.attention.sublayer.heads.0.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
40 -> ('encoder.layers.0.attention.sublayer.heads.0.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
41 -> ('encoder.layers.0.attention.sublayer.heads.1', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
42 -> ('encoder.layers.0.attention.sublayer.heads.1.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
43 -> ('encoder.layers.0.attention.sublayer.heads.1.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
44 -> ('encoder.layers.0.attention.sublayer.heads.1.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
45 -> ('encoder.layers.0.attention.sublayer.heads.2', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
46 -> ('encoder.layers.0.attention.sublayer.heads.2.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
47 -> ('encoder.layers.0.attention.sublayer.heads.2.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
48 -> ('encoder.layers.0.attention.sublayer.heads.2.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
49 -> ('encoder.layers.0.attention.sublayer.heads.3', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
50 -> ('encoder.layers.0.attention.sublayer.heads.3.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
51 -> ('encoder.layers.0.attention.sublayer.heads.3.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
52 -> ('encoder.layers.0.attention.sublayer.heads.3.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
53 -> ('encoder.layers.0.attention.sublayer.heads.4', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
54 -> ('encoder.layers.0.attention.sublayer.heads.4.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
55 -> ('encoder.layers.0.attention.sublayer.heads.4.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
56 -> ('encoder.layers.0.attention.sublayer.heads.4.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
57 -> ('encoder.layers.0.attention.sublayer.heads.5', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
58 -> ('encoder.layers.0.attention.sublayer.heads.5.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
59 -> ('encoder.layers.0.attention.sublayer.heads.5.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
60 -> ('encoder.layers.0.attention.sublayer.heads.5.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
61 -> ('encoder.layers.0.attention.sublayer.heads.6', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
62 -> ('encoder.layers.0.attention.sublayer.heads.6.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
63 -> ('encoder.layers.0.attention.sublayer.heads.6.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
64 -> ('encoder.layers.0.attention.sublayer.heads.6.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
65 -> ('encoder.layers.0.attention.sublayer.heads.7', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
66 -> ('encoder.layers.0.attention.sublayer.heads.7.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
67 -> ('encoder.layers.0.attention.sublayer.heads.7.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
68 -> ('encoder.layers.0.attention.sublayer.heads.7.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
69 -> ('encoder.layers.0.attention.sublayer.linear', Linear(in_features=256, out_features=128, bias=True)) |
|
70 -> ('encoder.layers.0.attention.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) |
|
71 -> ('encoder.layers.0.attention.dropout', Dropout(p=0.1, inplace=False)) |
|
72 -> ('encoder.layers.0.feed_forward', Residual( |
|
(sublayer): MoeLayer( |
|
(experts): ModuleList( |
|
(0-7): 8 x FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
) |
|
) |
|
(gate): Linear(in_features=128, out_features=8, bias=False) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
)) |
|
73 -> ('encoder.layers.0.feed_forward.sublayer', MoeLayer( |
|
(experts): ModuleList( |
|
(0-7): 8 x FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
) |
|
) |
|
(gate): Linear(in_features=128, out_features=8, bias=False) |
|
)) |
|
74 -> ('encoder.layers.0.feed_forward.sublayer.experts', ModuleList( |
|
(0-7): 8 x FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
) |
|
)) |
|
75 -> ('encoder.layers.0.feed_forward.sublayer.experts.0', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
76 -> ('encoder.layers.0.feed_forward.sublayer.experts.0.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
77 -> ('encoder.layers.0.feed_forward.sublayer.experts.0.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
78 -> ('encoder.layers.0.feed_forward.sublayer.experts.0.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
79 -> ('encoder.layers.0.feed_forward.sublayer.experts.1', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
80 -> ('encoder.layers.0.feed_forward.sublayer.experts.1.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
81 -> ('encoder.layers.0.feed_forward.sublayer.experts.1.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
82 -> ('encoder.layers.0.feed_forward.sublayer.experts.1.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
83 -> ('encoder.layers.0.feed_forward.sublayer.experts.2', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
84 -> ('encoder.layers.0.feed_forward.sublayer.experts.2.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
85 -> ('encoder.layers.0.feed_forward.sublayer.experts.2.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
86 -> ('encoder.layers.0.feed_forward.sublayer.experts.2.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
87 -> ('encoder.layers.0.feed_forward.sublayer.experts.3', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
88 -> ('encoder.layers.0.feed_forward.sublayer.experts.3.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
89 -> ('encoder.layers.0.feed_forward.sublayer.experts.3.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
90 -> ('encoder.layers.0.feed_forward.sublayer.experts.3.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
91 -> ('encoder.layers.0.feed_forward.sublayer.experts.4', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
92 -> ('encoder.layers.0.feed_forward.sublayer.experts.4.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
93 -> ('encoder.layers.0.feed_forward.sublayer.experts.4.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
94 -> ('encoder.layers.0.feed_forward.sublayer.experts.4.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
95 -> ('encoder.layers.0.feed_forward.sublayer.experts.5', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
96 -> ('encoder.layers.0.feed_forward.sublayer.experts.5.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
97 -> ('encoder.layers.0.feed_forward.sublayer.experts.5.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
98 -> ('encoder.layers.0.feed_forward.sublayer.experts.5.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
99 -> ('encoder.layers.0.feed_forward.sublayer.experts.6', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
100 -> ('encoder.layers.0.feed_forward.sublayer.experts.6.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
101 -> ('encoder.layers.0.feed_forward.sublayer.experts.6.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
102 -> ('encoder.layers.0.feed_forward.sublayer.experts.6.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
103 -> ('encoder.layers.0.feed_forward.sublayer.experts.7', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
104 -> ('encoder.layers.0.feed_forward.sublayer.experts.7.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
105 -> ('encoder.layers.0.feed_forward.sublayer.experts.7.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
106 -> ('encoder.layers.0.feed_forward.sublayer.experts.7.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
107 -> ('encoder.layers.0.feed_forward.sublayer.gate', Linear(in_features=128, out_features=8, bias=False)) |
|
108 -> ('encoder.layers.0.feed_forward.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) |
|
109 -> ('encoder.layers.0.feed_forward.dropout', Dropout(p=0.1, inplace=False)) |
|
110 -> ('encoder.layers.0.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) |
|
111 -> ('encoder.layers.1', MoE_TransformerGraphEncoderLayer( |
|
(attention): Residual( |
|
(sublayer): MultiHeadAttention( |
|
(heads): ModuleList( |
|
(0-7): 8 x AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
) |
|
(linear): Linear(in_features=256, out_features=128, bias=True) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(feed_forward): Residual( |
|
(sublayer): MoeLayer( |
|
(experts): ModuleList( |
|
(0-7): 8 x FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
) |
|
) |
|
(gate): Linear(in_features=128, out_features=8, bias=False) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
)) |
|
112 -> ('encoder.layers.1.attention', Residual( |
|
(sublayer): MultiHeadAttention( |
|
(heads): ModuleList( |
|
(0-7): 8 x AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
) |
|
(linear): Linear(in_features=256, out_features=128, bias=True) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
)) |
|
113 -> ('encoder.layers.1.attention.sublayer', MultiHeadAttention( |
|
(heads): ModuleList( |
|
(0-7): 8 x AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
) |
|
(linear): Linear(in_features=256, out_features=128, bias=True) |
|
)) |
|
114 -> ('encoder.layers.1.attention.sublayer.heads', ModuleList( |
|
(0-7): 8 x AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
)) |
|
115 -> ('encoder.layers.1.attention.sublayer.heads.0', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
116 -> ('encoder.layers.1.attention.sublayer.heads.0.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
117 -> ('encoder.layers.1.attention.sublayer.heads.0.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
118 -> ('encoder.layers.1.attention.sublayer.heads.0.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
119 -> ('encoder.layers.1.attention.sublayer.heads.1', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
120 -> ('encoder.layers.1.attention.sublayer.heads.1.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
121 -> ('encoder.layers.1.attention.sublayer.heads.1.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
122 -> ('encoder.layers.1.attention.sublayer.heads.1.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
123 -> ('encoder.layers.1.attention.sublayer.heads.2', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
124 -> ('encoder.layers.1.attention.sublayer.heads.2.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
125 -> ('encoder.layers.1.attention.sublayer.heads.2.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
126 -> ('encoder.layers.1.attention.sublayer.heads.2.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
127 -> ('encoder.layers.1.attention.sublayer.heads.3', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
128 -> ('encoder.layers.1.attention.sublayer.heads.3.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
129 -> ('encoder.layers.1.attention.sublayer.heads.3.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
130 -> ('encoder.layers.1.attention.sublayer.heads.3.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
131 -> ('encoder.layers.1.attention.sublayer.heads.4', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
132 -> ('encoder.layers.1.attention.sublayer.heads.4.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
133 -> ('encoder.layers.1.attention.sublayer.heads.4.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
134 -> ('encoder.layers.1.attention.sublayer.heads.4.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
135 -> ('encoder.layers.1.attention.sublayer.heads.5', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
136 -> ('encoder.layers.1.attention.sublayer.heads.5.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
137 -> ('encoder.layers.1.attention.sublayer.heads.5.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
138 -> ('encoder.layers.1.attention.sublayer.heads.5.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
139 -> ('encoder.layers.1.attention.sublayer.heads.6', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
140 -> ('encoder.layers.1.attention.sublayer.heads.6.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
141 -> ('encoder.layers.1.attention.sublayer.heads.6.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
142 -> ('encoder.layers.1.attention.sublayer.heads.6.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
143 -> ('encoder.layers.1.attention.sublayer.heads.7', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
144 -> ('encoder.layers.1.attention.sublayer.heads.7.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
145 -> ('encoder.layers.1.attention.sublayer.heads.7.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
146 -> ('encoder.layers.1.attention.sublayer.heads.7.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
147 -> ('encoder.layers.1.attention.sublayer.linear', Linear(in_features=256, out_features=128, bias=True)) |
|
148 -> ('encoder.layers.1.attention.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) |
|
149 -> ('encoder.layers.1.attention.dropout', Dropout(p=0.1, inplace=False)) |
|
150 -> ('encoder.layers.1.feed_forward', Residual( |
|
(sublayer): MoeLayer( |
|
(experts): ModuleList( |
|
(0-7): 8 x FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
) |
|
) |
|
(gate): Linear(in_features=128, out_features=8, bias=False) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
)) |
|
151 -> ('encoder.layers.1.feed_forward.sublayer', MoeLayer( |
|
(experts): ModuleList( |
|
(0-7): 8 x FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
) |
|
) |
|
(gate): Linear(in_features=128, out_features=8, bias=False) |
|
)) |
|
152 -> ('encoder.layers.1.feed_forward.sublayer.experts', ModuleList( |
|
(0-7): 8 x FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
) |
|
)) |
|
153 -> ('encoder.layers.1.feed_forward.sublayer.experts.0', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
154 -> ('encoder.layers.1.feed_forward.sublayer.experts.0.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
155 -> ('encoder.layers.1.feed_forward.sublayer.experts.0.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
156 -> ('encoder.layers.1.feed_forward.sublayer.experts.0.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
157 -> ('encoder.layers.1.feed_forward.sublayer.experts.1', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
158 -> ('encoder.layers.1.feed_forward.sublayer.experts.1.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
159 -> ('encoder.layers.1.feed_forward.sublayer.experts.1.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
160 -> ('encoder.layers.1.feed_forward.sublayer.experts.1.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
161 -> ('encoder.layers.1.feed_forward.sublayer.experts.2', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
162 -> ('encoder.layers.1.feed_forward.sublayer.experts.2.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
163 -> ('encoder.layers.1.feed_forward.sublayer.experts.2.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
164 -> ('encoder.layers.1.feed_forward.sublayer.experts.2.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
165 -> ('encoder.layers.1.feed_forward.sublayer.experts.3', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
166 -> ('encoder.layers.1.feed_forward.sublayer.experts.3.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
167 -> ('encoder.layers.1.feed_forward.sublayer.experts.3.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
168 -> ('encoder.layers.1.feed_forward.sublayer.experts.3.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
169 -> ('encoder.layers.1.feed_forward.sublayer.experts.4', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
170 -> ('encoder.layers.1.feed_forward.sublayer.experts.4.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
171 -> ('encoder.layers.1.feed_forward.sublayer.experts.4.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
172 -> ('encoder.layers.1.feed_forward.sublayer.experts.4.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
173 -> ('encoder.layers.1.feed_forward.sublayer.experts.5', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
174 -> ('encoder.layers.1.feed_forward.sublayer.experts.5.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
175 -> ('encoder.layers.1.feed_forward.sublayer.experts.5.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
176 -> ('encoder.layers.1.feed_forward.sublayer.experts.5.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
177 -> ('encoder.layers.1.feed_forward.sublayer.experts.6', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
178 -> ('encoder.layers.1.feed_forward.sublayer.experts.6.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
179 -> ('encoder.layers.1.feed_forward.sublayer.experts.6.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
180 -> ('encoder.layers.1.feed_forward.sublayer.experts.6.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
181 -> ('encoder.layers.1.feed_forward.sublayer.experts.7', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
182 -> ('encoder.layers.1.feed_forward.sublayer.experts.7.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
183 -> ('encoder.layers.1.feed_forward.sublayer.experts.7.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
184 -> ('encoder.layers.1.feed_forward.sublayer.experts.7.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
185 -> ('encoder.layers.1.feed_forward.sublayer.gate', Linear(in_features=128, out_features=8, bias=False)) |
|
186 -> ('encoder.layers.1.feed_forward.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) |
|
187 -> ('encoder.layers.1.feed_forward.dropout', Dropout(p=0.1, inplace=False)) |
|
188 -> ('encoder.layers.1.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) |
|
189 -> ('encoder.layers.2', MoE_TransformerGraphEncoderLayer( |
|
(attention): Residual( |
|
(sublayer): MultiHeadAttention( |
|
(heads): ModuleList( |
|
(0-7): 8 x AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
) |
|
(linear): Linear(in_features=256, out_features=128, bias=True) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(feed_forward): Residual( |
|
(sublayer): MoeLayer( |
|
(experts): ModuleList( |
|
(0-7): 8 x FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
) |
|
) |
|
(gate): Linear(in_features=128, out_features=8, bias=False) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
)) |
|
190 -> ('encoder.layers.2.attention', Residual( |
|
(sublayer): MultiHeadAttention( |
|
(heads): ModuleList( |
|
(0-7): 8 x AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
) |
|
(linear): Linear(in_features=256, out_features=128, bias=True) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
)) |
|
191 -> ('encoder.layers.2.attention.sublayer', MultiHeadAttention( |
|
(heads): ModuleList( |
|
(0-7): 8 x AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
) |
|
(linear): Linear(in_features=256, out_features=128, bias=True) |
|
)) |
|
192 -> ('encoder.layers.2.attention.sublayer.heads', ModuleList( |
|
(0-7): 8 x AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
)) |
|
193 -> ('encoder.layers.2.attention.sublayer.heads.0', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
194 -> ('encoder.layers.2.attention.sublayer.heads.0.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
195 -> ('encoder.layers.2.attention.sublayer.heads.0.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
196 -> ('encoder.layers.2.attention.sublayer.heads.0.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
197 -> ('encoder.layers.2.attention.sublayer.heads.1', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
198 -> ('encoder.layers.2.attention.sublayer.heads.1.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
199 -> ('encoder.layers.2.attention.sublayer.heads.1.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
200 -> ('encoder.layers.2.attention.sublayer.heads.1.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
201 -> ('encoder.layers.2.attention.sublayer.heads.2', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
202 -> ('encoder.layers.2.attention.sublayer.heads.2.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
203 -> ('encoder.layers.2.attention.sublayer.heads.2.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
204 -> ('encoder.layers.2.attention.sublayer.heads.2.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
205 -> ('encoder.layers.2.attention.sublayer.heads.3', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
206 -> ('encoder.layers.2.attention.sublayer.heads.3.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
207 -> ('encoder.layers.2.attention.sublayer.heads.3.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
208 -> ('encoder.layers.2.attention.sublayer.heads.3.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
209 -> ('encoder.layers.2.attention.sublayer.heads.4', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
210 -> ('encoder.layers.2.attention.sublayer.heads.4.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
211 -> ('encoder.layers.2.attention.sublayer.heads.4.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
212 -> ('encoder.layers.2.attention.sublayer.heads.4.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
213 -> ('encoder.layers.2.attention.sublayer.heads.5', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
214 -> ('encoder.layers.2.attention.sublayer.heads.5.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
215 -> ('encoder.layers.2.attention.sublayer.heads.5.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
216 -> ('encoder.layers.2.attention.sublayer.heads.5.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
217 -> ('encoder.layers.2.attention.sublayer.heads.6', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
218 -> ('encoder.layers.2.attention.sublayer.heads.6.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
219 -> ('encoder.layers.2.attention.sublayer.heads.6.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
220 -> ('encoder.layers.2.attention.sublayer.heads.6.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
221 -> ('encoder.layers.2.attention.sublayer.heads.7', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
222 -> ('encoder.layers.2.attention.sublayer.heads.7.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
223 -> ('encoder.layers.2.attention.sublayer.heads.7.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
224 -> ('encoder.layers.2.attention.sublayer.heads.7.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
225 -> ('encoder.layers.2.attention.sublayer.linear', Linear(in_features=256, out_features=128, bias=True)) |
|
226 -> ('encoder.layers.2.attention.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) |
|
227 -> ('encoder.layers.2.attention.dropout', Dropout(p=0.1, inplace=False)) |
|
228 -> ('encoder.layers.2.feed_forward', Residual( |
|
(sublayer): MoeLayer( |
|
(experts): ModuleList( |
|
(0-7): 8 x FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
) |
|
) |
|
(gate): Linear(in_features=128, out_features=8, bias=False) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
)) |
|
229 -> ('encoder.layers.2.feed_forward.sublayer', MoeLayer( |
|
(experts): ModuleList( |
|
(0-7): 8 x FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
) |
|
) |
|
(gate): Linear(in_features=128, out_features=8, bias=False) |
|
)) |
|
230 -> ('encoder.layers.2.feed_forward.sublayer.experts', ModuleList( |
|
(0-7): 8 x FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
) |
|
)) |
|
231 -> ('encoder.layers.2.feed_forward.sublayer.experts.0', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
232 -> ('encoder.layers.2.feed_forward.sublayer.experts.0.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
233 -> ('encoder.layers.2.feed_forward.sublayer.experts.0.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
234 -> ('encoder.layers.2.feed_forward.sublayer.experts.0.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
235 -> ('encoder.layers.2.feed_forward.sublayer.experts.1', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
236 -> ('encoder.layers.2.feed_forward.sublayer.experts.1.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
237 -> ('encoder.layers.2.feed_forward.sublayer.experts.1.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
238 -> ('encoder.layers.2.feed_forward.sublayer.experts.1.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
239 -> ('encoder.layers.2.feed_forward.sublayer.experts.2', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
240 -> ('encoder.layers.2.feed_forward.sublayer.experts.2.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
241 -> ('encoder.layers.2.feed_forward.sublayer.experts.2.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
242 -> ('encoder.layers.2.feed_forward.sublayer.experts.2.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
243 -> ('encoder.layers.2.feed_forward.sublayer.experts.3', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
244 -> ('encoder.layers.2.feed_forward.sublayer.experts.3.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
245 -> ('encoder.layers.2.feed_forward.sublayer.experts.3.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
246 -> ('encoder.layers.2.feed_forward.sublayer.experts.3.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
247 -> ('encoder.layers.2.feed_forward.sublayer.experts.4', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
248 -> ('encoder.layers.2.feed_forward.sublayer.experts.4.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
249 -> ('encoder.layers.2.feed_forward.sublayer.experts.4.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
250 -> ('encoder.layers.2.feed_forward.sublayer.experts.4.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
251 -> ('encoder.layers.2.feed_forward.sublayer.experts.5', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
252 -> ('encoder.layers.2.feed_forward.sublayer.experts.5.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
253 -> ('encoder.layers.2.feed_forward.sublayer.experts.5.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
254 -> ('encoder.layers.2.feed_forward.sublayer.experts.5.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
255 -> ('encoder.layers.2.feed_forward.sublayer.experts.6', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
256 -> ('encoder.layers.2.feed_forward.sublayer.experts.6.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
257 -> ('encoder.layers.2.feed_forward.sublayer.experts.6.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
258 -> ('encoder.layers.2.feed_forward.sublayer.experts.6.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
259 -> ('encoder.layers.2.feed_forward.sublayer.experts.7', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
260 -> ('encoder.layers.2.feed_forward.sublayer.experts.7.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
261 -> ('encoder.layers.2.feed_forward.sublayer.experts.7.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
262 -> ('encoder.layers.2.feed_forward.sublayer.experts.7.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
263 -> ('encoder.layers.2.feed_forward.sublayer.gate', Linear(in_features=128, out_features=8, bias=False)) |
|
264 -> ('encoder.layers.2.feed_forward.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) |
|
265 -> ('encoder.layers.2.feed_forward.dropout', Dropout(p=0.1, inplace=False)) |
|
266 -> ('encoder.layers.2.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) |
|
267 -> ('encoder.layers.3', MoE_TransformerGraphEncoderLayer( |
|
(attention): Residual( |
|
(sublayer): MultiHeadAttention( |
|
(heads): ModuleList( |
|
(0-7): 8 x AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
) |
|
(linear): Linear(in_features=256, out_features=128, bias=True) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(feed_forward): Residual( |
|
(sublayer): MoeLayer( |
|
(experts): ModuleList( |
|
(0-7): 8 x FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
) |
|
) |
|
(gate): Linear(in_features=128, out_features=8, bias=False) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
)) |
|
268 -> ('encoder.layers.3.attention', Residual( |
|
(sublayer): MultiHeadAttention( |
|
(heads): ModuleList( |
|
(0-7): 8 x AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
) |
|
(linear): Linear(in_features=256, out_features=128, bias=True) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
)) |
|
269 -> ('encoder.layers.3.attention.sublayer', MultiHeadAttention( |
|
(heads): ModuleList( |
|
(0-7): 8 x AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
) |
|
(linear): Linear(in_features=256, out_features=128, bias=True) |
|
)) |
|
270 -> ('encoder.layers.3.attention.sublayer.heads', ModuleList( |
|
(0-7): 8 x AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
)) |
|
271 -> ('encoder.layers.3.attention.sublayer.heads.0', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
272 -> ('encoder.layers.3.attention.sublayer.heads.0.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
273 -> ('encoder.layers.3.attention.sublayer.heads.0.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
274 -> ('encoder.layers.3.attention.sublayer.heads.0.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
275 -> ('encoder.layers.3.attention.sublayer.heads.1', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
276 -> ('encoder.layers.3.attention.sublayer.heads.1.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
277 -> ('encoder.layers.3.attention.sublayer.heads.1.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
278 -> ('encoder.layers.3.attention.sublayer.heads.1.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
279 -> ('encoder.layers.3.attention.sublayer.heads.2', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
280 -> ('encoder.layers.3.attention.sublayer.heads.2.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
281 -> ('encoder.layers.3.attention.sublayer.heads.2.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
282 -> ('encoder.layers.3.attention.sublayer.heads.2.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
283 -> ('encoder.layers.3.attention.sublayer.heads.3', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
284 -> ('encoder.layers.3.attention.sublayer.heads.3.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
285 -> ('encoder.layers.3.attention.sublayer.heads.3.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
286 -> ('encoder.layers.3.attention.sublayer.heads.3.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
287 -> ('encoder.layers.3.attention.sublayer.heads.4', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
288 -> ('encoder.layers.3.attention.sublayer.heads.4.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
289 -> ('encoder.layers.3.attention.sublayer.heads.4.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
290 -> ('encoder.layers.3.attention.sublayer.heads.4.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
291 -> ('encoder.layers.3.attention.sublayer.heads.5', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
292 -> ('encoder.layers.3.attention.sublayer.heads.5.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
293 -> ('encoder.layers.3.attention.sublayer.heads.5.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
294 -> ('encoder.layers.3.attention.sublayer.heads.5.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
295 -> ('encoder.layers.3.attention.sublayer.heads.6', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
296 -> ('encoder.layers.3.attention.sublayer.heads.6.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
297 -> ('encoder.layers.3.attention.sublayer.heads.6.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
298 -> ('encoder.layers.3.attention.sublayer.heads.6.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
299 -> ('encoder.layers.3.attention.sublayer.heads.7', AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
)) |
|
300 -> ('encoder.layers.3.attention.sublayer.heads.7.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
301 -> ('encoder.layers.3.attention.sublayer.heads.7.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
302 -> ('encoder.layers.3.attention.sublayer.heads.7.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) |
|
303 -> ('encoder.layers.3.attention.sublayer.linear', Linear(in_features=256, out_features=128, bias=True)) |
|
304 -> ('encoder.layers.3.attention.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) |
|
305 -> ('encoder.layers.3.attention.dropout', Dropout(p=0.1, inplace=False)) |
|
306 -> ('encoder.layers.3.feed_forward', Residual( |
|
(sublayer): MoeLayer( |
|
(experts): ModuleList( |
|
(0-7): 8 x FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
) |
|
) |
|
(gate): Linear(in_features=128, out_features=8, bias=False) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
)) |
|
307 -> ('encoder.layers.3.feed_forward.sublayer', MoeLayer( |
|
(experts): ModuleList( |
|
(0-7): 8 x FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
) |
|
) |
|
(gate): Linear(in_features=128, out_features=8, bias=False) |
|
)) |
|
308 -> ('encoder.layers.3.feed_forward.sublayer.experts', ModuleList( |
|
(0-7): 8 x FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
) |
|
)) |
|
309 -> ('encoder.layers.3.feed_forward.sublayer.experts.0', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
310 -> ('encoder.layers.3.feed_forward.sublayer.experts.0.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
311 -> ('encoder.layers.3.feed_forward.sublayer.experts.0.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
312 -> ('encoder.layers.3.feed_forward.sublayer.experts.0.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
313 -> ('encoder.layers.3.feed_forward.sublayer.experts.1', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
314 -> ('encoder.layers.3.feed_forward.sublayer.experts.1.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
315 -> ('encoder.layers.3.feed_forward.sublayer.experts.1.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
316 -> ('encoder.layers.3.feed_forward.sublayer.experts.1.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
317 -> ('encoder.layers.3.feed_forward.sublayer.experts.2', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
318 -> ('encoder.layers.3.feed_forward.sublayer.experts.2.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
319 -> ('encoder.layers.3.feed_forward.sublayer.experts.2.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
320 -> ('encoder.layers.3.feed_forward.sublayer.experts.2.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
321 -> ('encoder.layers.3.feed_forward.sublayer.experts.3', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
322 -> ('encoder.layers.3.feed_forward.sublayer.experts.3.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
323 -> ('encoder.layers.3.feed_forward.sublayer.experts.3.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
324 -> ('encoder.layers.3.feed_forward.sublayer.experts.3.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
325 -> ('encoder.layers.3.feed_forward.sublayer.experts.4', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
326 -> ('encoder.layers.3.feed_forward.sublayer.experts.4.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
327 -> ('encoder.layers.3.feed_forward.sublayer.experts.4.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
328 -> ('encoder.layers.3.feed_forward.sublayer.experts.4.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
329 -> ('encoder.layers.3.feed_forward.sublayer.experts.5', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
330 -> ('encoder.layers.3.feed_forward.sublayer.experts.5.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
331 -> ('encoder.layers.3.feed_forward.sublayer.experts.5.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
332 -> ('encoder.layers.3.feed_forward.sublayer.experts.5.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
333 -> ('encoder.layers.3.feed_forward.sublayer.experts.6', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
334 -> ('encoder.layers.3.feed_forward.sublayer.experts.6.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
335 -> ('encoder.layers.3.feed_forward.sublayer.experts.6.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
336 -> ('encoder.layers.3.feed_forward.sublayer.experts.6.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
337 -> ('encoder.layers.3.feed_forward.sublayer.experts.7', FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
)) |
|
338 -> ('encoder.layers.3.feed_forward.sublayer.experts.7.w1', Linear(in_features=128, out_features=512, bias=False)) |
|
339 -> ('encoder.layers.3.feed_forward.sublayer.experts.7.w2', Linear(in_features=512, out_features=128, bias=False)) |
|
340 -> ('encoder.layers.3.feed_forward.sublayer.experts.7.w3', Linear(in_features=128, out_features=512, bias=False)) |
|
341 -> ('encoder.layers.3.feed_forward.sublayer.gate', Linear(in_features=128, out_features=8, bias=False)) |
|
342 -> ('encoder.layers.3.feed_forward.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) |
|
343 -> ('encoder.layers.3.feed_forward.dropout', Dropout(p=0.1, inplace=False)) |
|
344 -> ('encoder.layers.3.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) |
|
345 -> ('encoder.positional_encoder', PositionalEncoder( |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
)) |
|
346 -> ('encoder.positional_encoder.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) |
|
347 -> ('out', Sequential( |
|
(0): Linear(in_features=128, out_features=128, bias=True) |
|
(1): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(2): Linear(in_features=128, out_features=14, bias=True) |
|
)) |
|
348 -> ('out.0', Linear(in_features=128, out_features=128, bias=True)) |
|
349 -> ('out.1', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) |
|
350 -> ('out.2', Linear(in_features=128, out_features=14, bias=True)) |
|
Counting the model summary and the Number of parameters MoE_GCN model |
|
model_summary : |
|
model_summary |
|
Layer_name Number of Parameters |
|
==================================================================================================== |
|
|
|
MulticlassAccuracy() 1548 |
|
MulticlassAccuracy() 128 |
|
MulticlassAccuracy() 128 |
|
MulticlassF1Score() 64 |
|
MulticlassF1Score() 1484 |
|
MulticlassF1Score() 2112 |
|
MulticlassConfusionMatrix() 2112 |
|
SGCN( |
|
(conv_layers): ModuleList( |
|
(0): unit_gcn( |
|
(conv_list): ModuleList( |
|
(0-2): 3 x Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(act): Mish() |
|
) |
|
(1): unit_gcn( |
|
(conv_list): ModuleList( |
|
(0-2): 3 x Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(act): Mish() |
|
) |
|
(2): unit_gcn( |
|
(conv_list): ModuleList( |
|
(0-2): 3 x Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(act): Mish() |
|
) |
|
) |
|
) 2112 |
|
MoE_TransformerGraphEncoder( |
|
(layers): ModuleList( |
|
(0-3): 4 x MoE_TransformerGraphEncoderLayer( |
|
(attention): Residual( |
|
(sublayer): MultiHeadAttention( |
|
(heads): ModuleList( |
|
(0-7): 8 x AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
) |
|
(linear): Linear(in_features=256, out_features=128, bias=True) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(feed_forward): Residual( |
|
(sublayer): MoeLayer( |
|
(experts): ModuleList( |
|
(0-7): 8 x FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
) |
|
) |
|
(gate): Linear(in_features=128, out_features=8, bias=False) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
) |
|
) |
|
(positional_encoder): PositionalEncoder( |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
) |
|
) 128 |
|
Sequential( |
|
(0): Linear(in_features=128, out_features=128, bias=True) |
|
(1): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(2): Linear(in_features=128, out_features=14, bias=True) |
|
) 9644 |
|
==================================================================================================== |
|
Total Params:19460 |
|
model_summary |
|
Layer_name Number of Parameters |
|
==================================================================================================== |
|
|
|
MulticlassAccuracy() 1548 |
|
MulticlassAccuracy() 128 |
|
MulticlassAccuracy() 128 |
|
MulticlassF1Score() 64 |
|
MulticlassF1Score() 1484 |
|
MulticlassF1Score() 2112 |
|
MulticlassConfusionMatrix() 2112 |
|
SGCN( |
|
(conv_layers): ModuleList( |
|
(0): unit_gcn( |
|
(conv_list): ModuleList( |
|
(0-2): 3 x Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(act): Mish() |
|
) |
|
(1): unit_gcn( |
|
(conv_list): ModuleList( |
|
(0-2): 3 x Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(act): Mish() |
|
) |
|
(2): unit_gcn( |
|
(conv_list): ModuleList( |
|
(0-2): 3 x Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(act): Mish() |
|
) |
|
) |
|
) 2112 |
|
MoE_TransformerGraphEncoder( |
|
(layers): ModuleList( |
|
(0-3): 4 x MoE_TransformerGraphEncoderLayer( |
|
(attention): Residual( |
|
(sublayer): MultiHeadAttention( |
|
(heads): ModuleList( |
|
(0-7): 8 x AttentionHead( |
|
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
) |
|
(linear): Linear(in_features=256, out_features=128, bias=True) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(feed_forward): Residual( |
|
(sublayer): MoeLayer( |
|
(experts): ModuleList( |
|
(0-7): 8 x FeedForward( |
|
(w1): Linear(in_features=128, out_features=512, bias=False) |
|
(w2): Linear(in_features=512, out_features=128, bias=False) |
|
(w3): Linear(in_features=128, out_features=512, bias=False) |
|
) |
|
) |
|
(gate): Linear(in_features=128, out_features=8, bias=False) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
) |
|
) |
|
(positional_encoder): PositionalEncoder( |
|
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
) |
|
) 128 |
|
Sequential( |
|
(0): Linear(in_features=128, out_features=128, bias=True) |
|
(1): LayerNorm((128,), eps=1e-05, elementwise_affine=True) |
|
(2): Linear(in_features=128, out_features=14, bias=True) |
|
) 9644 |
|
==================================================================================================== |
|
Total Params:19460 |
|
Counting the parameters MoE_GCN model |
|
+------------------------------------------------------------+------------+ |
|
| Modules | Parameters | |
|
+------------------------------------------------------------+------------+ |
|
| gcn.conv_layers.0.mask | 1452 | |
|
| gcn.conv_layers.0.conv_list.0.weight | 96 | |
|
| gcn.conv_layers.0.conv_list.0.bias | 32 | |
|
| gcn.conv_layers.0.conv_list.1.weight | 96 | |
|
| gcn.conv_layers.0.conv_list.1.bias | 32 | |
|
| gcn.conv_layers.0.conv_list.2.weight | 96 | |
|
| gcn.conv_layers.0.conv_list.2.bias | 32 | |
|
| gcn.conv_layers.0.bn.weight | 32 | |
|
| gcn.conv_layers.0.bn.bias | 32 | |
|
| gcn.conv_layers.1.mask | 1452 | |
|
| gcn.conv_layers.1.conv_list.0.weight | 2048 | |
|
| gcn.conv_layers.1.conv_list.0.bias | 64 | |
|
| gcn.conv_layers.1.conv_list.1.weight | 2048 | |
|
| gcn.conv_layers.1.conv_list.1.bias | 64 | |
|
| gcn.conv_layers.1.conv_list.2.weight | 2048 | |
|
| gcn.conv_layers.1.conv_list.2.bias | 64 | |
|
| gcn.conv_layers.1.bn.weight | 64 | |
|
| gcn.conv_layers.1.bn.bias | 64 | |
|
| gcn.conv_layers.2.mask | 1452 | |
|
| gcn.conv_layers.2.conv_list.0.weight | 8192 | |
|
| gcn.conv_layers.2.conv_list.0.bias | 128 | |
|
| gcn.conv_layers.2.conv_list.1.weight | 8192 | |
|
| gcn.conv_layers.2.conv_list.1.bias | 128 | |
|
| gcn.conv_layers.2.conv_list.2.weight | 8192 | |
|
| gcn.conv_layers.2.conv_list.2.bias | 128 | |
|
| gcn.conv_layers.2.bn.weight | 128 | |
|
| gcn.conv_layers.2.bn.bias | 128 | |
|
| encoder.layers.0.attention.sublayer.heads.0.q_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.0.q_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.0.k_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.0.k_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.0.v_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.0.v_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.1.q_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.1.q_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.1.k_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.1.k_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.1.v_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.1.v_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.2.q_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.2.q_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.2.k_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.2.k_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.2.v_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.2.v_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.3.q_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.3.q_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.3.k_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.3.k_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.3.v_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.3.v_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.4.q_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.4.q_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.4.k_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.4.k_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.4.v_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.4.v_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.5.q_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.5.q_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.5.k_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.5.k_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.5.v_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.5.v_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.6.q_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.6.q_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.6.k_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.6.k_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.6.v_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.6.v_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.7.q_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.7.q_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.7.k_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.7.k_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.7.v_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.7.v_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.linear.weight | 32768 | |
|
| encoder.layers.0.attention.sublayer.linear.bias | 128 | |
|
| encoder.layers.0.attention.norm.weight | 128 | |
|
| encoder.layers.0.attention.norm.bias | 128 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.0.w1.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.0.w2.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.0.w3.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.1.w1.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.1.w2.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.1.w3.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.2.w1.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.2.w2.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.2.w3.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.3.w1.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.3.w2.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.3.w3.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.4.w1.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.4.w2.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.4.w3.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.5.w1.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.5.w2.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.5.w3.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.6.w1.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.6.w2.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.6.w3.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.7.w1.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.7.w2.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.7.w3.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.gate.weight | 1024 | |
|
| encoder.layers.0.feed_forward.norm.weight | 128 | |
|
| encoder.layers.0.feed_forward.norm.bias | 128 | |
|
| encoder.layers.0.norm.weight | 128 | |
|
| encoder.layers.0.norm.bias | 128 | |
|
| encoder.layers.1.attention.sublayer.heads.0.q_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.0.q_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.0.k_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.0.k_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.0.v_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.0.v_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.1.q_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.1.q_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.1.k_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.1.k_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.1.v_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.1.v_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.2.q_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.2.q_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.2.k_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.2.k_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.2.v_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.2.v_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.3.q_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.3.q_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.3.k_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.3.k_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.3.v_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.3.v_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.4.q_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.4.q_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.4.k_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.4.k_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.4.v_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.4.v_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.5.q_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.5.q_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.5.k_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.5.k_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.5.v_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.5.v_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.6.q_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.6.q_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.6.k_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.6.k_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.6.v_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.6.v_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.7.q_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.7.q_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.7.k_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.7.k_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.7.v_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.7.v_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.linear.weight | 32768 | |
|
| encoder.layers.1.attention.sublayer.linear.bias | 128 | |
|
| encoder.layers.1.attention.norm.weight | 128 | |
|
| encoder.layers.1.attention.norm.bias | 128 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.0.w1.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.0.w2.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.0.w3.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.1.w1.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.1.w2.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.1.w3.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.2.w1.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.2.w2.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.2.w3.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.3.w1.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.3.w2.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.3.w3.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.4.w1.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.4.w2.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.4.w3.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.5.w1.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.5.w2.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.5.w3.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.6.w1.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.6.w2.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.6.w3.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.7.w1.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.7.w2.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.7.w3.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.gate.weight | 1024 | |
|
| encoder.layers.1.feed_forward.norm.weight | 128 | |
|
| encoder.layers.1.feed_forward.norm.bias | 128 | |
|
| encoder.layers.1.norm.weight | 128 | |
|
| encoder.layers.1.norm.bias | 128 | |
|
| encoder.layers.2.attention.sublayer.heads.0.q_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.0.q_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.0.k_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.0.k_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.0.v_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.0.v_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.1.q_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.1.q_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.1.k_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.1.k_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.1.v_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.1.v_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.2.q_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.2.q_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.2.k_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.2.k_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.2.v_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.2.v_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.3.q_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.3.q_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.3.k_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.3.k_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.3.v_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.3.v_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.4.q_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.4.q_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.4.k_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.4.k_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.4.v_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.4.v_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.5.q_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.5.q_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.5.k_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.5.k_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.5.v_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.5.v_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.6.q_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.6.q_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.6.k_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.6.k_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.6.v_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.6.v_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.7.q_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.7.q_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.7.k_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.7.k_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.7.v_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.7.v_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.linear.weight | 32768 | |
|
| encoder.layers.2.attention.sublayer.linear.bias | 128 | |
|
| encoder.layers.2.attention.norm.weight | 128 | |
|
| encoder.layers.2.attention.norm.bias | 128 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.0.w1.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.0.w2.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.0.w3.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.1.w1.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.1.w2.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.1.w3.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.2.w1.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.2.w2.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.2.w3.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.3.w1.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.3.w2.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.3.w3.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.4.w1.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.4.w2.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.4.w3.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.5.w1.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.5.w2.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.5.w3.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.6.w1.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.6.w2.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.6.w3.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.7.w1.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.7.w2.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.7.w3.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.gate.weight | 1024 | |
|
| encoder.layers.2.feed_forward.norm.weight | 128 | |
|
| encoder.layers.2.feed_forward.norm.bias | 128 | |
|
| encoder.layers.2.norm.weight | 128 | |
|
| encoder.layers.2.norm.bias | 128 | |
|
| encoder.layers.3.attention.sublayer.heads.0.q_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.0.q_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.0.k_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.0.k_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.0.v_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.0.v_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.1.q_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.1.q_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.1.k_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.1.k_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.1.v_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.1.v_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.2.q_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.2.q_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.2.k_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.2.k_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.2.v_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.2.v_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.3.q_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.3.q_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.3.k_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.3.k_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.3.v_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.3.v_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.4.q_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.4.q_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.4.k_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.4.k_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.4.v_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.4.v_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.5.q_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.5.q_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.5.k_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.5.k_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.5.v_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.5.v_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.6.q_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.6.q_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.6.k_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.6.k_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.6.v_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.6.v_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.7.q_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.7.q_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.7.k_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.7.k_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.7.v_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.7.v_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.linear.weight | 32768 | |
|
| encoder.layers.3.attention.sublayer.linear.bias | 128 | |
|
| encoder.layers.3.attention.norm.weight | 128 | |
|
| encoder.layers.3.attention.norm.bias | 128 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.0.w1.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.0.w2.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.0.w3.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.1.w1.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.1.w2.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.1.w3.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.2.w1.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.2.w2.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.2.w3.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.3.w1.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.3.w2.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.3.w3.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.4.w1.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.4.w2.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.4.w3.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.5.w1.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.5.w2.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.5.w3.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.6.w1.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.6.w2.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.6.w3.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.7.w1.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.7.w2.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.7.w3.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.gate.weight | 1024 | |
|
| encoder.layers.3.feed_forward.norm.weight | 128 | |
|
| encoder.layers.3.feed_forward.norm.bias | 128 | |
|
| encoder.layers.3.norm.weight | 128 | |
|
| encoder.layers.3.norm.bias | 128 | |
|
| encoder.positional_encoder.norm.weight | 128 | |
|
| encoder.positional_encoder.norm.bias | 128 | |
|
| out.0.weight | 16384 | |
|
| out.0.bias | 128 | |
|
| out.1.weight | 128 | |
|
| out.1.bias | 128 | |
|
| out.2.weight | 1792 | |
|
| out.2.bias | 14 | |
|
+------------------------------------------------------------+------------+ |
|
Total Trainable Params: 6881810 |
|
| gcn.conv_layers.1.mask | 1452 | |
|
| gcn.conv_layers.1.conv_list.0.weight | 2048 | |
|
| gcn.conv_layers.1.conv_list.0.bias | 64 | |
|
| gcn.conv_layers.1.conv_list.1.weight | 2048 | |
|
| gcn.conv_layers.1.conv_list.1.bias | 64 | |
|
| gcn.conv_layers.1.conv_list.2.weight | 2048 | |
|
| gcn.conv_layers.1.conv_list.2.bias | 64 | |
|
| gcn.conv_layers.1.bn.weight | 64 | |
|
| gcn.conv_layers.1.bn.bias | 64 | |
|
| gcn.conv_layers.2.mask | 1452 | |
|
| gcn.conv_layers.2.conv_list.0.weight | 8192 | |
|
| gcn.conv_layers.2.conv_list.0.bias | 128 | |
|
| gcn.conv_layers.2.conv_list.1.weight | 8192 | |
|
| gcn.conv_layers.2.conv_list.1.bias | 128 | |
|
| gcn.conv_layers.2.conv_list.2.weight | 8192 | |
|
| gcn.conv_layers.2.conv_list.2.bias | 128 | |
|
| gcn.conv_layers.2.bn.weight | 128 | |
|
| gcn.conv_layers.2.bn.bias | 128 | |
|
| encoder.layers.0.attention.sublayer.heads.0.q_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.0.q_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.0.k_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.0.k_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.0.v_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.0.v_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.1.q_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.1.q_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.1.k_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.1.k_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.1.v_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.1.v_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.2.q_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.2.q_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.2.k_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.2.k_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.2.v_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.2.v_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.3.q_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.3.q_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.3.k_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.3.k_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.3.v_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.3.v_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.4.q_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.4.q_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.4.k_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.4.k_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.4.v_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.4.v_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.5.q_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.5.q_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.5.k_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.5.k_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.5.v_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.5.v_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.6.q_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.6.q_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.6.k_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.6.k_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.6.v_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.6.v_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.7.q_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.7.q_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.7.k_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.7.k_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.heads.7.v_conv.weight | 4096 | |
|
| encoder.layers.0.attention.sublayer.heads.7.v_conv.bias | 32 | |
|
| encoder.layers.0.attention.sublayer.linear.weight | 32768 | |
|
| encoder.layers.0.attention.sublayer.linear.bias | 128 | |
|
| encoder.layers.0.attention.norm.weight | 128 | |
|
| encoder.layers.0.attention.norm.bias | 128 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.0.w1.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.0.w2.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.0.w3.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.1.w1.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.1.w2.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.1.w3.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.2.w1.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.2.w2.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.2.w3.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.3.w1.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.3.w2.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.3.w3.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.4.w1.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.4.w2.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.4.w3.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.5.w1.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.5.w2.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.5.w3.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.6.w1.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.6.w2.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.6.w3.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.7.w1.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.7.w2.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.experts.7.w3.weight | 65536 | |
|
| encoder.layers.0.feed_forward.sublayer.gate.weight | 1024 | |
|
| encoder.layers.0.feed_forward.norm.weight | 128 | |
|
| encoder.layers.0.feed_forward.norm.bias | 128 | |
|
| encoder.layers.0.norm.weight | 128 | |
|
| encoder.layers.0.norm.bias | 128 | |
|
| encoder.layers.1.attention.sublayer.heads.0.q_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.0.q_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.0.k_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.0.k_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.0.v_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.0.v_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.1.q_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.1.q_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.1.k_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.1.k_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.1.v_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.1.v_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.2.q_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.2.q_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.2.k_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.2.k_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.2.v_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.2.v_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.3.q_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.3.q_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.3.k_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.3.k_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.3.v_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.3.v_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.4.q_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.4.q_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.4.k_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.4.k_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.4.v_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.4.v_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.5.q_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.5.q_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.5.k_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.5.k_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.5.v_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.5.v_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.6.q_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.6.q_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.6.k_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.6.k_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.6.v_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.6.v_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.7.q_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.7.q_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.7.k_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.7.k_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.heads.7.v_conv.weight | 4096 | |
|
| encoder.layers.1.attention.sublayer.heads.7.v_conv.bias | 32 | |
|
| encoder.layers.1.attention.sublayer.linear.weight | 32768 | |
|
| encoder.layers.1.attention.sublayer.linear.bias | 128 | |
|
| encoder.layers.1.attention.norm.weight | 128 | |
|
| encoder.layers.1.attention.norm.bias | 128 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.0.w1.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.0.w2.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.0.w3.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.1.w1.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.1.w2.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.1.w3.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.2.w1.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.2.w2.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.2.w3.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.3.w1.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.3.w2.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.3.w3.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.4.w1.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.4.w2.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.4.w3.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.5.w1.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.5.w2.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.5.w3.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.6.w1.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.6.w2.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.6.w3.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.7.w1.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.7.w2.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.experts.7.w3.weight | 65536 | |
|
| encoder.layers.1.feed_forward.sublayer.gate.weight | 1024 | |
|
| encoder.layers.1.feed_forward.norm.weight | 128 | |
|
| encoder.layers.1.feed_forward.norm.bias | 128 | |
|
| encoder.layers.1.norm.weight | 128 | |
|
| encoder.layers.1.norm.bias | 128 | |
|
| encoder.layers.2.attention.sublayer.heads.0.q_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.0.q_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.0.k_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.0.k_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.0.v_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.0.v_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.1.q_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.1.q_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.1.k_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.1.k_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.1.v_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.1.v_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.2.q_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.2.q_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.2.k_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.2.k_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.2.v_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.2.v_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.3.q_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.3.q_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.3.k_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.3.k_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.3.v_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.3.v_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.4.q_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.4.q_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.4.k_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.4.k_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.4.v_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.4.v_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.5.q_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.5.q_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.5.k_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.5.k_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.5.v_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.5.v_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.6.q_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.6.q_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.6.k_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.6.k_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.6.v_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.6.v_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.7.q_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.7.q_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.7.k_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.7.k_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.heads.7.v_conv.weight | 4096 | |
|
| encoder.layers.2.attention.sublayer.heads.7.v_conv.bias | 32 | |
|
| encoder.layers.2.attention.sublayer.linear.weight | 32768 | |
|
| encoder.layers.2.attention.sublayer.linear.bias | 128 | |
|
| encoder.layers.2.attention.norm.weight | 128 | |
|
| encoder.layers.2.attention.norm.bias | 128 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.0.w1.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.0.w2.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.0.w3.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.1.w1.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.1.w2.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.1.w3.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.2.w1.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.2.w2.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.2.w3.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.3.w1.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.3.w2.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.3.w3.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.4.w1.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.4.w2.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.4.w3.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.5.w1.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.5.w2.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.5.w3.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.6.w1.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.6.w2.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.6.w3.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.7.w1.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.7.w2.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.experts.7.w3.weight | 65536 | |
|
| encoder.layers.2.feed_forward.sublayer.gate.weight | 1024 | |
|
| encoder.layers.2.feed_forward.norm.weight | 128 | |
|
| encoder.layers.2.feed_forward.norm.bias | 128 | |
|
| encoder.layers.2.norm.weight | 128 | |
|
| encoder.layers.2.norm.bias | 128 | |
|
| encoder.layers.3.attention.sublayer.heads.0.q_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.0.q_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.0.k_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.0.k_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.0.v_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.0.v_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.1.q_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.1.q_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.1.k_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.1.k_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.1.v_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.1.v_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.2.q_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.2.q_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.2.k_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.2.k_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.2.v_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.2.v_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.3.q_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.3.q_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.3.k_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.3.k_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.3.v_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.3.v_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.4.q_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.4.q_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.4.k_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.4.k_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.4.v_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.4.v_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.5.q_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.5.q_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.5.k_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.5.k_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.5.v_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.5.v_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.6.q_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.6.q_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.6.k_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.6.k_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.6.v_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.6.v_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.7.q_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.7.q_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.7.k_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.7.k_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.heads.7.v_conv.weight | 4096 | |
|
| encoder.layers.3.attention.sublayer.heads.7.v_conv.bias | 32 | |
|
| encoder.layers.3.attention.sublayer.linear.weight | 32768 | |
|
| encoder.layers.3.attention.sublayer.linear.bias | 128 | |
|
| encoder.layers.3.attention.norm.weight | 128 | |
|
| encoder.layers.3.attention.norm.bias | 128 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.0.w1.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.0.w2.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.0.w3.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.1.w1.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.1.w2.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.1.w3.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.2.w1.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.2.w2.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.2.w3.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.3.w1.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.3.w2.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.3.w3.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.4.w1.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.4.w2.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.4.w3.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.5.w1.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.5.w2.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.5.w3.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.6.w1.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.6.w2.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.6.w3.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.7.w1.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.7.w2.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.experts.7.w3.weight | 65536 | |
|
| encoder.layers.3.feed_forward.sublayer.gate.weight | 1024 | |
|
| encoder.layers.3.feed_forward.norm.weight | 128 | |
|
| encoder.layers.3.feed_forward.norm.bias | 128 | |
|
| encoder.layers.3.norm.weight | 128 | |
|
| encoder.layers.3.norm.bias | 128 | |
|
| encoder.positional_encoder.norm.weight | 128 | |
|
| encoder.positional_encoder.norm.bias | 128 | |
|
| out.0.weight | 16384 | |
|
| out.0.bias | 128 | |
|
| out.1.weight | 128 | |
|
| out.1.bias | 128 | |
|
| out.2.weight | 1792 | |
|
| out.2.bias | 14 | |
|
+------------------------------------------------------------+------------+ |
|
Total Trainable Params: 6881810 |
|
FLOPs of the MoE_GCN model using OpenAI_flops : = |
|
2083328 FLOPs |
|
FLOPs of the MoE_GCN model using DeepMind : = |
|
20748288 FLOPs |
|
Collecting torchstat |
|
Downloading torchstat-0.0.7-py3-none-any.whl (11 kB) |
|
Requirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (from torchstat) (2.1.0+cu121) |
|
Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from torchstat) (1.23.5) |
|
Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from torchstat) (1.5.3) |
|
Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->torchstat) (2.8.2) |
|
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->torchstat) (2023.3.post1) |
|
Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch->torchstat) (3.13.1) |
|
Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch->torchstat) (4.5.0) |
|
Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch->torchstat) (1.12) |
|
Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch->torchstat) (3.2.1) |
|
Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch->torchstat) (3.1.3) |
|
Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch->torchstat) (2023.6.0) |
|
Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch->torchstat) (2.1.0) |
|
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas->torchstat) (1.16.0) |
|
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch->torchstat) (2.1.4) |
|
Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch->torchstat) (1.3.0) |
|
+------------------------------------------------------------+------------+ |
|
| Modules | Parameters | |
|
+------------------------------------------------------------+------------+ |
|
| gcn.conv_layers.0.mask | 1452 | |
|
| gcn.conv_layers.0.conv_list.0.weight | 96 | |
|
| gcn.conv_layers.0.conv_list.0.bias | 32 | |
|
| gcn.conv_layers.0.conv_list.1.weight | 96 | |
|
| gcn.conv_layers.0.conv_list.1.bias | 32 | |
|
| gcn.conv_layers.0.conv_list.2.weight | 96 | |
|
| gcn.conv_layers.0.conv_list.2.bias | 32 | |
|
| gcn.conv_layers.0.bn.weight | 32 | |
|
| gcn.conv_layers.0.bn.bias | 32 | |
|
| gcn.conv_layers.0.bn.bias | 32 | |
|
| gcn.conv_layers.0.bn.bias | 32 | |
|
| gcn.conv_layers.0.bn.bias | 32 | |
|
| gcn.conv_layers.0.bn.bias | 32 | |
|
| gcn.conv_layers.0.bn.bias | 32 | |
|
| gcn.conv_layers.0.bn.bias | 32 | |
|
| gcn.conv_layers.0.bn.bias | 32 | |
|
| gcn.conv_layers.0.bn.bias | 32 | |
|
| gcn.conv_layers.0.bn.bias | 32 | |
|
| gcn.conv_layers.0.bn.bias | 32 | |
|
[ 0.4739, -0.4411, 0.5949],.bias | 32 | |
|
..., |
|
[ 0.4923, -0.3621, 0.5645], |
|
[ 0.5081, -0.3883, 0.5798], |
|
[ 0.5182, -0.3990, 0.5934]]], |
|
[[[ 0.4553, -0.4093, 0.5347], |
|
[ 0.4465, -0.3465, 0.5095], |
|
[ 0.4286, -0.3852, 0.5241], |
|
..., |
|
[ 0.4509, -0.3077, 0.4728], |
|
[ 0.4479, -0.3254, 0.4838], |
|
[ 0.4530, -0.3408, 0.4978]], |
|
[[ 0.4037, -0.3051, 0.4236], |
|
[ 0.3883, -0.2474, 0.4012], |
|
[ 0.3734, -0.2841, 0.4104], |
|
..., |
|
[ 0.4092, -0.2127, 0.3748], |
|
[ 0.4185, -0.2356, 0.3855], |
|
[ 0.4252, -0.2515, 0.3991]], |
|
[[ 0.3537, -0.2618, 0.3555], |
|
[ 0.3258, -0.2090, 0.3282], |
|
[ 0.3217, -0.2452, 0.3408], |
|
..., |
|
[ 0.3415, -0.1797, 0.2958], |
|
[ 0.3506, -0.2016, 0.3046], |
|
[ 0.3611, -0.2148, 0.3186]], |
|
..., |
|
[[ 0.4537, -0.3549, 0.5033], |
|
[ 0.4227, -0.3063, 0.4904], |
|
[ 0.4194, -0.3419, 0.4946], |
|
..., |
|
[ 0.4334, -0.2780, 0.4736], |
|
[ 0.4372, -0.3001, 0.4873], |
|
[ 0.4425, -0.3181, 0.4995]], |
|
[[ 0.4640, -0.3862, 0.5401], |
|
[ 0.4427, -0.3413, 0.5315], |
|
[ 0.4335, -0.3730, 0.5314], |
|
..., |
|
[ 0.4738, -0.3113, 0.5228], |
|
[ 0.4929, -0.3358, 0.5369], |
|
[ 0.5051, -0.3468, 0.5482]], |
|
[[ 0.4655, -0.4041, 0.5552], |
|
[ 0.4422, -0.3530, 0.5404], |
|
[ 0.4380, -0.3914, 0.5487], |
|
..., |
|
[ 0.4567, -0.3171, 0.5157], |
|
[ 0.4776, -0.3411, 0.5297], |
|
[ 0.4967, -0.3589, 0.5422]]], |
|
..., |
|
[[[ 0.4761, -0.3570, 0.5141], |
|
[ 0.4648, -0.3141, 0.5161], |
|
[ 0.4576, -0.3426, 0.5166], |
|
..., |
|
[ 0.5142, -0.2463, 0.5095], |
|
[ 0.5202, -0.2300, 0.5076], |
|
[ 0.5223, -0.2150, 0.5060]], |
|
[[ 0.3927, -0.2960, 0.4408], |
|
[ 0.3717, -0.2445, 0.4256], |
|
[ 0.3685, -0.2817, 0.4376], |
|
..., |
|
[ 0.3918, -0.1666, 0.3913], |
|
[ 0.3900, -0.1506, 0.3827], |
|
[ 0.3875, -0.1388, 0.3751]], |
|
[[ 0.3311, -0.2876, 0.3770], |
|
[ 0.3134, -0.2340, 0.3532], |
|
[ 0.3020, -0.2676, 0.3640], |
|
..., |
|
[ 0.3366, -0.1689, 0.3178], |
|
[ 0.3309, -0.1637, 0.3046], |
|
[ 0.3255, -0.1634, 0.2930]], |
|
..., |
|
[[ 0.3970, -0.3313, 0.4459], |
|
[ 0.3739, -0.2776, 0.4274], |
|
[ 0.3668, -0.3141, 0.4362], |
|
..., |
|
[ 0.3846, -0.2333, 0.3969], |
|
[ 0.3707, -0.2444, 0.3857], |
|
[ 0.3743, -0.2543, 0.3905]], |
|
[[ 0.4111, -0.3530, 0.4816], |
|
[ 0.3957, -0.3066, 0.4776], |
|
[ 0.3829, -0.3379, 0.4756], |
|
..., |
|
[ 0.4256, -0.2702, 0.4716], |
|
[ 0.4197, -0.2851, 0.4655], |
|
[ 0.4262, -0.3008, 0.4746]], |
|
[[ 0.4676, -0.4057, 0.5600], |
|
[ 0.4560, -0.3730, 0.5605], |
|
[ 0.4467, -0.3971, 0.5617], |
|
..., |
|
[ 0.4902, -0.2986, 0.5512], |
|
[ 0.4911, -0.2836, 0.5483], |
|
[ 0.5034, -0.2781, 0.5599]]], |
|
[[[ 0.4721, -0.4069, 0.5961], |
|
[ 0.4707, -0.3673, 0.6005], |
|
[ 0.4602, -0.3962, 0.6026], |
|
..., |
|
[ 0.4986, -0.2846, 0.5858], |
|
[ 0.5057, -0.2652, 0.5839], |
|
[ 0.5095, -0.2495, 0.5822]], |
|
[[ 0.4048, -0.3119, 0.4769], |
|
[ 0.3951, -0.2639, 0.4670], |
|
[ 0.3832, -0.2988, 0.4758], |
|
..., |
|
[ 0.4350, -0.1855, 0.4479], |
|
[ 0.4395, -0.1692, 0.4425], |
|
[ 0.4435, -0.1551, 0.4377]], |
|
[[ 0.3602, -0.2710, 0.3874], |
|
[ 0.3429, -0.2231, 0.3582], |
|
[ 0.3350, -0.2542, 0.3804], |
|
..., |
|
[ 0.3495, -0.1652, 0.3141], |
|
[ 0.3383, -0.1565, 0.3000], |
|
[ 0.3286, -0.1488, 0.2876]], |
|
..., |
|
[[ 0.4653, -0.3848, 0.5433], |
|
[ 0.4530, -0.3342, 0.5315], |
|
[ 0.4418, -0.3660, 0.5397], |
|
..., |
|
[ 0.4616, -0.3031, 0.5096], |
|
[ 0.4674, -0.3284, 0.5250], |
|
[ 0.4782, -0.3437, 0.5373]], |
|
[[ 0.4766, -0.4024, 0.5700], |
|
[ 0.4672, -0.3583, 0.5674], |
|
[ 0.4549, -0.3893, 0.5701], |
|
..., |
|
[ 0.4827, -0.3129, 0.5544], |
|
[ 0.4868, -0.3336, 0.5710], |
|
[ 0.4939, -0.3441, 0.5810]], |
|
[[ 0.4893, -0.4281, 0.5998], |
|
[ 0.4710, -0.3846, 0.5879], |
|
[ 0.4665, -0.4158, 0.5996], |
|
..., |
|
[ 0.4830, -0.3421, 0.5596], |
|
[ 0.4835, -0.3640, 0.5749], |
|
[ 0.4894, -0.3746, 0.5868]]], |
|
[[[ 0.4661, -0.4360, 0.6053], |
|
[ 0.4644, -0.3942, 0.6059], |
|
[ 0.4469, -0.4223, 0.6035], |
|
..., |
|
[ 0.5182, -0.3283, 0.6059], |
|
[ 0.5178, -0.3333, 0.6037], |
|
[ 0.5292, -0.3455, 0.6152]], |
|
[[ 0.4357, -0.3562, 0.5250], |
|
[ 0.4243, -0.3055, 0.5140], |
|
[ 0.4129, -0.3416, 0.5214], |
|
..., |
|
[ 0.4613, -0.2225, 0.4948], |
|
[ 0.4654, -0.2058, 0.4900], |
|
[ 0.4691, -0.1910, 0.4858]], |
|
[[ 0.3920, -0.3078, 0.4274], |
|
[ 0.3592, -0.2533, 0.4066], |
|
[ 0.3542, -0.2891, 0.4083], |
|
..., |
|
[ 0.3804, -0.2067, 0.3905], |
|
[ 0.3754, -0.2042, 0.3783], |
|
[ 0.3706, -0.2030, 0.3676]], |
|
..., |
|
[[ 0.4513, -0.4002, 0.5616], |
|
[ 0.4358, -0.3517, 0.5431], |
|
[ 0.4258, -0.3837, 0.5538], |
|
..., |
|
[ 0.4320, -0.3158, 0.5094], |
|
[ 0.4378, -0.3351, 0.5229], |
|
[ 0.4490, -0.3474, 0.5371]], |
|
[[ 0.4701, -0.4148, 0.5681], |
|
[ 0.4479, -0.3735, 0.5515], |
|
[ 0.4469, -0.4041, 0.5673], |
|
..., |
|
[ 0.4323, -0.2901, 0.5100], |
|
[ 0.4419, -0.3081, 0.5235], |
|
[ 0.4596, -0.3278, 0.5353]], |
|
[[ 0.4701, -0.4338, 0.5783], |
|
[ 0.4548, -0.3844, 0.5665], |
|
[ 0.4445, -0.4182, 0.5731], |
|
..., |
|
[ 0.4607, -0.3052, 0.5426], |
|
[ 0.4555, -0.3033, 0.5344], |
|
[ 0.4608, -0.3103, 0.5418]]]]), tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0])]) |
|
2 |
|
dict_keys(['skeleton', 'label']) |
|
tensor([[[[ 0.4939, -0.4103, 0.5915], |
|
[ 0.4737, -0.3553, 0.5707], |
|
[ 0.4599, -0.3896, 0.5775], |
|
..., |
|
[ 0.4801, -0.2952, 0.5397], |
|
[ 0.4706, -0.3054, 0.5279], |
|
[ 0.4703, -0.3167, 0.5310]], |
|
[[ 0.4864, -0.3711, 0.5602], |
|
[ 0.4609, -0.3071, 0.5350], |
|
[ 0.4513, -0.3446, 0.5424], |
|
..., |
|
[ 0.4731, -0.2591, 0.5014], |
|
[ 0.4591, -0.2642, 0.4880], |
|
[ 0.4564, -0.2782, 0.4883]], |
|
[[ 0.4212, -0.2986, 0.4492], |
|
[ 0.3987, -0.2458, 0.4205], |
|
[ 0.3858, -0.2760, 0.4282], |
|
..., |
|
[ 0.4163, -0.2065, 0.3856], |
|
[ 0.3996, -0.2124, 0.3711], |
|
[ 0.3905, -0.2104, 0.3684]], |
|
..., |
|
[[ 0.4576, -0.3808, 0.5104], |
|
[ 0.4329, -0.3245, 0.4925], |
|
[ 0.4201, -0.3548, 0.4903], |
|
..., |
|
[ 0.4615, -0.2862, 0.4808], |
|
[ 0.4557, -0.3022, 0.4882], |
|
[ 0.4561, -0.3109, 0.4997]], |
|
[[ 0.4845, -0.4035, 0.5531], |
|
[ 0.4633, -0.3530, 0.5352], |
|
[ 0.4509, -0.3827, 0.5375], |
|
..., |
|
[ 0.4786, -0.3131, 0.5140], |
|
[ 0.4782, -0.3320, 0.5252], |
|
[ 0.4785, -0.3434, 0.5350]], |
|
[[ 0.5020, -0.4166, 0.5738], |
|
[ 0.4699, -0.3629, 0.5480], |
|
[ 0.4667, -0.3985, 0.5586], |
|
..., |
|
[ 0.4755, -0.3057, 0.5077], |
|
[ 0.4767, -0.3267, 0.5179], |
|
[ 0.4811, -0.3479, 0.5321]]], |
|
[[[ 0.4939, -0.4563, 0.5789], |
|
[ 0.4638, -0.3953, 0.5506], |
|
[ 0.4620, -0.4382, 0.5657], |
|
..., |
|
[ 0.4632, -0.3589, 0.5063], |
|
[ 0.4661, -0.3812, 0.5163], |
|
[ 0.4745, -0.4018, 0.5311]], |
|
[[ 0.4456, -0.3599, 0.5136], |
|
[ 0.4279, -0.2952, 0.4838], |
|
[ 0.4181, -0.3321, 0.5008], |
|
..., |
|
[ 0.4411, -0.2501, 0.4356], |
|
[ 0.4369, -0.2676, 0.4452], |
|
[ 0.4389, -0.2807, 0.4601]], |
|
[[ 0.3839, -0.2790, 0.4051], |
|
[ 0.3551, -0.2230, 0.3712], |
|
[ 0.3479, -0.2560, 0.3870], |
|
..., |
|
[ 0.3680, -0.1768, 0.3253], |
|
[ 0.3622, -0.1935, 0.3308], |
|
[ 0.3616, -0.2029, 0.3452]], |
|
..., |
|
[[ 0.4551, -0.3857, 0.5213], |
|
[ 0.4337, -0.3419, 0.5154], |
|
[ 0.4222, -0.3709, 0.5111], |
|
..., |
|
[ 0.4649, -0.3003, 0.5134], |
|
[ 0.4720, -0.3259, 0.5276], |
|
[ 0.4770, -0.3510, 0.5386]], |
|
[[ 0.4612, -0.4040, 0.5458], |
|
[ 0.4535, -0.3696, 0.5527], |
|
[ 0.4339, -0.3905, 0.5403], |
|
..., |
|
[ 0.5015, -0.3442, 0.5705], |
|
[ 0.5089, -0.3708, 0.5856], |
|
[ 0.5125, -0.3900, 0.5944]], |
|
[[ 0.5000, -0.4536, 0.5998], |
|
[ 0.4767, -0.4069, 0.5885], |
|
[ 0.4739, -0.4411, 0.5949], |
|
..., |
|
[ 0.4923, -0.3621, 0.5645], |
|
[ 0.5081, -0.3883, 0.5798], |
|
[ 0.5182, -0.3990, 0.5934]]], |
|
[[[ 0.4553, -0.4093, 0.5347], |
|
[ 0.4465, -0.3465, 0.5095], |
|
[ 0.4286, -0.3852, 0.5241], |
|
..., |
|
[ 0.4509, -0.3077, 0.4728], |
|
[ 0.4479, -0.3254, 0.4838], |
|
[ 0.4530, -0.3408, 0.4978]], |
|
[[ 0.4037, -0.3051, 0.4236], |
|
[ 0.3883, -0.2474, 0.4012], |
|
[ 0.3734, -0.2841, 0.4104], |
|
..., |
|
[ 0.4092, -0.2127, 0.3748], |
|
[ 0.4185, -0.2356, 0.3855], |
|
[ 0.4252, -0.2515, 0.3991]], |
|
[[ 0.3537, -0.2618, 0.3555], |
|
[ 0.3258, -0.2090, 0.3282], |
|
[ 0.3217, -0.2452, 0.3408], |
|
..., |
|
[ 0.3415, -0.1797, 0.2958], |
|
[ 0.3506, -0.2016, 0.3046], |
|
[ 0.3611, -0.2148, 0.3186]], |
|
..., |
|
[[ 0.4537, -0.3549, 0.5033], |
|
[ 0.4227, -0.3063, 0.4904], |
|
[ 0.4194, -0.3419, 0.4946], |
|
..., |
|
[ 0.4334, -0.2780, 0.4736], |
|
[ 0.4372, -0.3001, 0.4873], |
|
[ 0.4425, -0.3181, 0.4995]], |
|
[[ 0.4640, -0.3862, 0.5401], |
|
[ 0.4427, -0.3413, 0.5315], |
|
[ 0.4335, -0.3730, 0.5314], |
|
..., |
|
[ 0.4738, -0.3113, 0.5228], |
|
[ 0.4929, -0.3358, 0.5369], |
|
[ 0.5051, -0.3468, 0.5482]], |
|
[[ 0.4655, -0.4041, 0.5552], |
|
[ 0.4422, -0.3530, 0.5404], |
|
[ 0.4380, -0.3914, 0.5487], |
|
..., |
|
[ 0.4567, -0.3171, 0.5157], |
|
[ 0.4776, -0.3411, 0.5297], |
|
[ 0.4967, -0.3589, 0.5422]]], |
|
..., |
|
[[[ 0.4761, -0.3570, 0.5141], |
|
[ 0.4648, -0.3141, 0.5161], |
|
[ 0.4576, -0.3426, 0.5166], |
|
..., |
|
[ 0.5142, -0.2463, 0.5095], |
|
[ 0.5202, -0.2300, 0.5076], |
|
[ 0.5223, -0.2150, 0.5060]], |
|
[[ 0.3927, -0.2960, 0.4408], |
|
[ 0.3717, -0.2445, 0.4256], |
|
[ 0.3685, -0.2817, 0.4376], |
|
..., |
|
[ 0.3918, -0.1666, 0.3913], |
|
[ 0.3900, -0.1506, 0.3827], |
|
[ 0.3875, -0.1388, 0.3751]], |
|
[[ 0.3311, -0.2876, 0.3770], |
|
[ 0.3134, -0.2340, 0.3532], |
|
[ 0.3020, -0.2676, 0.3640], |
|
..., |
|
[ 0.3366, -0.1689, 0.3178], |
|
[ 0.3309, -0.1637, 0.3046], |
|
[ 0.3255, -0.1634, 0.2930]], |
|
..., |
|
[[ 0.3970, -0.3313, 0.4459], |
|
[ 0.3739, -0.2776, 0.4274], |
|
[ 0.3668, -0.3141, 0.4362], |
|
..., |
|
[ 0.3846, -0.2333, 0.3969], |
|
[ 0.3707, -0.2444, 0.3857], |
|
[ 0.3743, -0.2543, 0.3905]], |
|
[[ 0.4111, -0.3530, 0.4816], |
|
[ 0.3957, -0.3066, 0.4776], |
|
[ 0.3829, -0.3379, 0.4756], |
|
..., |
|
[ 0.4256, -0.2702, 0.4716], |
|
[ 0.4197, -0.2851, 0.4655], |
|
[ 0.4262, -0.3008, 0.4746]], |
|
[[ 0.4676, -0.4057, 0.5600], |
|
[ 0.4560, -0.3730, 0.5605], |
|
[ 0.4467, -0.3971, 0.5617], |
|
..., |
|
[ 0.4902, -0.2986, 0.5512], |
|
[ 0.4911, -0.2836, 0.5483], |
|
[ 0.5034, -0.2781, 0.5599]]], |
|
[[[ 0.4721, -0.4069, 0.5961], |
|
[ 0.4707, -0.3673, 0.6005], |
|
[ 0.4602, -0.3962, 0.6026], |
|
..., |
|
[ 0.4986, -0.2846, 0.5858], |
|
[ 0.5057, -0.2652, 0.5839], |
|
[ 0.5095, -0.2495, 0.5822]], |
|
[[ 0.4048, -0.3119, 0.4769], |
|
[ 0.3951, -0.2639, 0.4670], |
|
[ 0.3832, -0.2988, 0.4758], |
|
..., |
|
[ 0.4350, -0.1855, 0.4479], |
|
[ 0.4395, -0.1692, 0.4425], |
|
[ 0.4435, -0.1551, 0.4377]], |
|
[[ 0.3602, -0.2710, 0.3874], |
|
[ 0.3429, -0.2231, 0.3582], |
|
[ 0.3350, -0.2542, 0.3804], |
|
..., |
|
[ 0.3495, -0.1652, 0.3141], |
|
[ 0.3383, -0.1565, 0.3000], |
|
[ 0.3286, -0.1488, 0.2876]], |
|
..., |
|
[[ 0.4653, -0.3848, 0.5433], |
|
[ 0.4530, -0.3342, 0.5315], |
|
[ 0.4418, -0.3660, 0.5397], |
|
..., |
|
[ 0.4616, -0.3031, 0.5096], |
|
[ 0.4674, -0.3284, 0.5250], |
|
[ 0.4782, -0.3437, 0.5373]], |
|
[[ 0.4766, -0.4024, 0.5700], |
|
[ 0.4672, -0.3583, 0.5674], |
|
[ 0.4549, -0.3893, 0.5701], |
|
..., |
|
[ 0.4827, -0.3129, 0.5544], |
|
[ 0.4868, -0.3336, 0.5710], |
|
[ 0.4939, -0.3441, 0.5810]], |
|
[[ 0.4893, -0.4281, 0.5998], |
|
[ 0.4710, -0.3846, 0.5879], |
|
[ 0.4665, -0.4158, 0.5996], |
|
..., |
|
[ 0.4830, -0.3421, 0.5596], |
|
[ 0.4835, -0.3640, 0.5749], |
|
[ 0.4894, -0.3746, 0.5868]]], |
|
[[[ 0.4661, -0.4360, 0.6053], |
|
[ 0.4644, -0.3942, 0.6059], |
|
[ 0.4469, -0.4223, 0.6035], |
|
..., |
|
[ 0.5182, -0.3283, 0.6059], |
|
[ 0.5178, -0.3333, 0.6037], |
|
[ 0.5292, -0.3455, 0.6152]], |
|
[[ 0.4357, -0.3562, 0.5250], |
|
[ 0.4243, -0.3055, 0.5140], |
|
[ 0.4129, -0.3416, 0.5214], |
|
..., |
|
[ 0.4613, -0.2225, 0.4948], |
|
[ 0.4654, -0.2058, 0.4900], |
|
[ 0.4691, -0.1910, 0.4858]], |
|
[[ 0.3920, -0.3078, 0.4274], |
|
[ 0.3592, -0.2533, 0.4066], |
|
[ 0.3542, -0.2891, 0.4083], |
|
..., |
|
[ 0.3804, -0.2067, 0.3905], |
|
[ 0.3754, -0.2042, 0.3783], |
|
[ 0.3706, -0.2030, 0.3676]], |
|
..., |
|
[[ 0.4513, -0.4002, 0.5616], |
|
[ 0.4358, -0.3517, 0.5431], |
|
[ 0.4258, -0.3837, 0.5538], |
|
..., |
|
[ 0.4320, -0.3158, 0.5094], |
|
[ 0.4378, -0.3351, 0.5229], |
|
[ 0.4490, -0.3474, 0.5371]], |
|
[[ 0.4701, -0.4148, 0.5681], |
|
[ 0.4479, -0.3735, 0.5515], |
|
[ 0.4469, -0.4041, 0.5673], |
|
..., |
|
[ 0.4323, -0.2901, 0.5100], |
|
[ 0.4419, -0.3081, 0.5235], |
|
[ 0.4596, -0.3278, 0.5353]], |
|
[[ 0.4701, -0.4338, 0.5783], |
|
[ 0.4548, -0.3844, 0.5665], |
|
[ 0.4445, -0.4182, 0.5731], |
|
..., |
|
[ 0.4607, -0.3052, 0.5426], |
|
[ 0.4555, -0.3033, 0.5344], |
|
[ 0.4608, -0.3103, 0.5418]]]]) |
|
skeleton |
|
label |
|
Tensor_dataT.size() = torch.Size([32, 8, 22, 3]) |
|
Tensor_dataT [[[ 0.45649411 -0.44376922 0.64408398] |
|
[ 0.45470198 -0.38724606 0.63845301] |
|
[ 0.43893905 -0.42612109 0.64874703] |
|
[ 0.41352988 -0.38762114 0.65398598] |
|
[ 0.38978973 -0.35307541 0.65376902] |
|
[ 0.38361855 -0.32759178 0.65515703] |
|
[ 0.4284792 -0.32936773 0.63953203] |
|
[ 0.42679544 -0.27440213 0.63265598] |
|
[ 0.42789929 -0.24478968 0.62921703] |
|
[ 0.42692376 -0.22101636 0.62609202] |
|
[ 0.45129005 -0.32722124 0.63175601] |
|
[ 0.44714241 -0.26338693 0.619479 ] |
|
[ 0.50353895 -0.34977931 0.62299418] |
|
[ 0.3156789 -0.27295206 0.60414994] |
|
[ 0.47331994 -0.33073168 0.62587798] |
|
[ 0.47041377 -0.27057905 0.61708701] |
|
[ 0.42616162 -0.25311683 0.71024507] |
|
[ 0.46730407 -0.21198767 0.60850102] |
|
[ 0.49502148 -0.34408698 0.619892 ] |
|
[ 0.49964735 -0.29375331 0.61635399] |
|
[ 0.50096575 -0.2707146 0.61472797] |
|
[ 0.45703796 -0.25597774 0.53799719]] |
|
[[ 0.47197036 -0.53988416 0.62220198] |
|
[ 0.4580784 -0.48336113 0.60461497] |
|
[ 0.44658563 -0.52154911 0.619412 ] |
|
[ 0.41508607 -0.48072571 0.61257303] |
|
[ 0.38082476 -0.44323452 0.589674 ] |
|
[ 0.36590875 -0.41295902 0.57904899] |
|
[ 0.41487425 -0.41403426 0.58618098] |
|
[ 0.4140427 -0.3613101 0.57492298] |
|
[ 0.41350103 -0.33505483 0.56929302] |
|
[ 0.4128616 -0.3113708 0.56417602] |
|
[ 0.44144987 -0.41669524 0.58362198] |
|
[ 0.43370049 -0.3579911 0.57625699] |
|
[ 0.49153033 -0.44347535 0.58263618] |
|
[ 0.30505913 -0.3713189 0.56583893] |
|
[ 0.46648639 -0.42415859 0.58316201] |
|
[ 0.45920816 -0.35960788 0.55863303] |
|
[ 0.41443498 -0.33983203 0.64373803] |
|
[ 0.44764333 -0.31478569 0.53467399] |
|
[ 0.49675979 -0.44231811 0.58563203] |
|
[ 0.48508369 -0.37770261 0.560574 ] |
|
[ 0.47726461 -0.3720665 0.549061 ] |
|
[ 0.41848824 -0.3831209 0.46360517]] |
|
[[ 0.48442138 -0.62001068 0.627913 ] |
|
[ 0.49168067 -0.57390347 0.60613197] |
|
[ 0.46249449 -0.58999824 0.617248 ] |
|
[ 0.46103121 -0.54664181 0.59524101] |
|
[ 0.47081903 -0.50676016 0.58063197] |
|
[ 0.47703809 -0.47600041 0.568829 ] |
|
[ 0.46432632 -0.4830178 0.574269 ] |
|
[ 0.45322754 -0.45161847 0.54255003] |
|
[ 0.44803504 -0.43584942 0.52669102] |
|
[ 0.46494869 -0.43861626 0.532435 ] |
|
[ 0.49320529 -0.50320813 0.58013397] |
|
[ 0.4726163 -0.49277866 0.54636502] |
|
[ 0.49780852 -0.61624818 0.53734219] |
|
[ 0.31374727 -0.59338886 0.52973294] |
|
[ 0.51733116 -0.52547568 0.58699799] |
|
[ 0.49490084 -0.51341313 0.55295902] |
|
[ 0.42256253 -0.5291977 0.63319808] |
|
[ 0.45177362 -0.54055221 0.54193801] |
|
[ 0.54645841 -0.56252827 0.598836 ] |
|
[ 0.51718837 -0.54657465 0.56708002] |
|
[ 0.50381804 -0.53947116 0.55249 ] |
|
[ 0.45658055 -0.56645892 0.4813922 ]] |
|
[[ 0.42587508 -0.67696014 0.56173801] |
|
[ 0.46481211 -0.66463394 0.56095499] |
|
[ 0.42960141 -0.64680746 0.55488998] |
|
[ 0.45645956 -0.617573 0.54098803] |
|
[ 0.48047119 -0.60097324 0.52756703] |
|
[ 0.49974634 -0.59675506 0.51798499] |
|
[ 0.49845378 -0.61679659 0.55171102] |
|
[ 0.51597109 -0.64597169 0.54589701] |
|
[ 0.5046869 -0.66281403 0.54299003] |
|
[ 0.5010224 -0.68822165 0.55855399] |
|
[ 0.5076827 -0.64872309 0.56002003] |
|
[ 0.52990845 -0.67580205 0.55221999] |
|
[ 0.58918724 -0.83106116 0.5905692 ] |
|
[ 0.40330692 -0.7874534 0.58834797] |
|
[ 0.5126011 -0.67765428 0.56693202] |
|
[ 0.52397628 -0.69367545 0.55389702] |
|
[ 0.4822849 -0.73224239 0.67502707] |
|
[ 0.51807494 -0.72636618 0.59556901] |
|
[ 0.51159101 -0.71302973 0.57522798] |
|
[ 0.51961776 -0.71390895 0.562195 ] |
|
[ 0.52242911 -0.72957377 0.580863 ] |
|
[ 0.4730504 -0.7378266 0.51739216]] |
|
[[ 0.28875737 -0.70936456 0.60423601] |
|
[ 0.31463972 -0.6756929 0.588386 ] |
|
[ 0.28418101 -0.67239651 0.58934498] |
|
[ 0.30820475 -0.66839428 0.57322299] |
|
[ 0.32074619 -0.62880076 0.561692 ] |
|
[ 0.34317953 -0.6224781 0.55596298] |
|
[ 0.33162814 -0.60459652 0.556265 ] |
|
[ 0.3104165 -0.60353749 0.52642602] |
|
[ 0.28594978 -0.60147305 0.51150697] |
|
[ 0.27226425 -0.61648274 0.51690602] |
|
[ 0.34866905 -0.63791372 0.56946599] |
|
[ 0.33020677 -0.64519455 0.54184502] |
|
[ 0.38262178 -0.79788928 0.57402021] |
|
[ 0.4739, -0.4411, 0.5949],.bias | 32 | |
|
WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). |
|
<ipython-input-186-f54b70cf0824>:8: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). |
|
Tensor_dataT = torch.tensor(dataT['skeleton']); |
|
<ipython-input-186-f54b70cf0824>:9: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). |
|
Tensor_labelsT = torch.tensor(dataT['label']); |
|
WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). |
|
WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). |
|
[ 0.4739, -0.4411, 0.5949],.bias | 32 | |
|
<ipython-input-187-dfd265fbff9e>:8: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). |
|
Tensor_dataT = torch.tensor(dataT['skeleton']); |
|
<ipython-input-187-dfd265fbff9e>:9: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). |
|
Tensor_labelsT = torch.tensor(dataT['label']); |
|
WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). |
|
[ 0.4739, -0.4411, 0.5949],.bias | 32 | |
|
[ 0.4739, -0.4411, 0.5949],.bias | 32 | |
|
[ 0.4739, -0.4411, 0.5949],.bias | 32 | |