/usr/local/lib/python3.10/dist-packages/lightning_fabric/connector.py:558: `precision=16` is supported for historical reasons but its usage is discouraged. Please set your precision to 16-mixed instead! INFO:pytorch_lightning.utilities.rank_zero:Using 16bit Automatic Mixed Precision (AMP) INFO:pytorch_lightning.utilities.rank_zero:GPU available: True (cuda), used: True INFO:pytorch_lightning.utilities.rank_zero:TPU available: False, using: 0 TPU cores INFO:pytorch_lightning.utilities.rank_zero:IPU available: False, using: 0 IPUs INFO:pytorch_lightning.utilities.rank_zero:HPU available: False, using: 0 HPUs /usr/local/lib/python3.10/dist-packages/pytorch_lightning/loggers/wandb.py:389: There is a wandb run already in progress and newly created instances of `WandbLogger` will reuse this run. If this is not desired, call `wandb.finish()` before instantiating `WandbLogger`. INFO:pytorch_lightning.accelerators.cuda:LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] INFO:pytorch_lightning.callbacks.model_summary: | Name | Type | Params ----------------------------------------------------------------- 0 | train_acc | MulticlassAccuracy | 0 1 | valid_acc | MulticlassAccuracy | 0 2 | test_acc | MulticlassAccuracy | 0 3 | val_f1_score | MulticlassF1Score | 0 4 | train_f1_score | MulticlassF1Score | 0 5 | test_f1_score | MulticlassF1Score | 0 6 | confusion_matrix | MulticlassConfusionMatrix | 0 7 | gcn | SGCN | 36.5 K 8 | encoder | MoE_TransformerGraphEncoder | 6.8 M 9 | out | Sequential | 18.6 K ----------------------------------------------------------------- 6.9 M Trainable params 0 Non-trainable params 6.9 M Total params 27.527 Total estimated model params size (MB) INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved. New best score: 0.263 INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.135 >= min_delta = 1e-08. New best score: 0.398 INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.008 >= min_delta = 1e-08. New best score: 0.406 Epoch 00006: reducing learning rate of group 0 to 5.0000e-04. INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.471 >= min_delta = 1e-08. New best score: 0.877 Epoch 00010: reducing learning rate of group 0 to 2.5000e-04. INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.016 >= min_delta = 1e-08. New best score: 0.893 INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.016 >= min_delta = 1e-08. New best score: 0.909 INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.006 >= min_delta = 1e-08. New best score: 0.915 INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.006 >= min_delta = 1e-08. New best score: 0.920 INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.002 >= min_delta = 1e-08. New best score: 0.923 Epoch 00017: reducing learning rate of group 0 to 1.2500e-04. INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.002 >= min_delta = 1e-08. New best score: 0.925 Epoch 00020: reducing learning rate of group 0 to 6.2500e-05. INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.002 >= min_delta = 1e-08. New best score: 0.927 Epoch 00023: reducing learning rate of group 0 to 3.1250e-05. INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.003 >= min_delta = 1e-08. New best score: 0.930 Epoch 00026: reducing learning rate of group 0 to 1.5625e-05. INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.003 >= min_delta = 1e-08. New best score: 0.933 Epoch 00029: reducing learning rate of group 0 to 7.8125e-06. Epoch 00032: reducing learning rate of group 0 to 5.0000e-06. INFO:pytorch_lightning.callbacks.early_stopping:Monitored metric val_accuracy did not improve in the last 50 records. Best score: 0.933. Signaling Trainer to stop. model_args ModelArgs : ModelArgs(dim=128, hidden_dim=512, norm_eps=1e-05, moe=MoeArgs(num_experts=8, num_experts_per_tok=2), max_batch_size=32, max_seq_len=8) model_args =: ModelArgs(dim=128, hidden_dim=512, norm_eps=1e-05, moe=MoeArgs(num_experts=8, num_experts_per_tok=2), max_batch_size=32, max_seq_len=8) model_args ModelArgs : ModelArgs(dim=128, hidden_dim=512, norm_eps=1e-05, moe=MoeArgs(num_experts=8, num_experts_per_tok=2), max_batch_size=32, max_seq_len=8) model_args =: ModelArgs(dim=128, hidden_dim=512, norm_eps=1e-05, moe=MoeArgs(num_experts=8, num_experts_per_tok=2), max_batch_size=32, max_seq_len=8) model_args ModelArgs : ModelArgs(dim=128, hidden_dim=512, norm_eps=1e-05, moe=MoeArgs(num_experts=8, num_experts_per_tok=2), max_batch_size=32, max_seq_len=8) model_args =: ModelArgs(dim=128, hidden_dim=512, norm_eps=1e-05, moe=MoeArgs(num_experts=8, num_experts_per_tok=2), max_batch_size=32, max_seq_len=8) model_args ModelArgs : ModelArgs(dim=128, hidden_dim=512, norm_eps=1e-05, moe=MoeArgs(num_experts=8, num_experts_per_tok=2), max_batch_size=32, max_seq_len=8) model_args =: ModelArgs(dim=128, hidden_dim=512, norm_eps=1e-05, moe=MoeArgs(num_experts=8, num_experts_per_tok=2), max_batch_size=32, max_seq_len=8) INFO:pytorch_lightning.accelerators.cuda:LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] 0 -> ('', MoE_GCN( (train_acc): MulticlassAccuracy() (valid_acc): MulticlassAccuracy() (test_acc): MulticlassAccuracy() (val_f1_score): MulticlassF1Score() (train_f1_score): MulticlassF1Score() (test_f1_score): MulticlassF1Score() (confusion_matrix): MulticlassConfusionMatrix() (gcn): SGCN( (conv_layers): ModuleList( (0): unit_gcn( (conv_list): ModuleList( (0-2): 3 x Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1)) ) (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): Mish() ) (1): unit_gcn( (conv_list): ModuleList( (0-2): 3 x Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1)) ) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): Mish() ) (2): unit_gcn( (conv_list): ModuleList( (0-2): 3 x Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1)) ) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): Mish() ) ) ) (encoder): MoE_TransformerGraphEncoder( (layers): ModuleList( (0-3): 4 x MoE_TransformerGraphEncoderLayer( (attention): Residual( (sublayer): MultiHeadAttention( (heads): ModuleList( (0-7): 8 x AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) ) ) (linear): Linear(in_features=256, out_features=128, bias=True) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (feed_forward): Residual( (sublayer): MoeLayer( (experts): ModuleList( (0-7): 8 x FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) ) ) (gate): Linear(in_features=128, out_features=8, bias=False) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) ) ) (positional_encoder): PositionalEncoder( (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) ) ) (out): Sequential( (0): Linear(in_features=128, out_features=128, bias=True) (1): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (2): Linear(in_features=128, out_features=14, bias=True) ) )) 1 -> ('train_acc', MulticlassAccuracy()) 2 -> ('valid_acc', MulticlassAccuracy()) 3 -> ('test_acc', MulticlassAccuracy()) 4 -> ('val_f1_score', MulticlassF1Score()) 5 -> ('train_f1_score', MulticlassF1Score()) 6 -> ('test_f1_score', MulticlassF1Score()) 7 -> ('confusion_matrix', MulticlassConfusionMatrix()) 8 -> ('gcn', SGCN( (conv_layers): ModuleList( (0): unit_gcn( (conv_list): ModuleList( (0-2): 3 x Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1)) ) (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): Mish() ) (1): unit_gcn( (conv_list): ModuleList( (0-2): 3 x Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1)) ) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): Mish() ) (2): unit_gcn( (conv_list): ModuleList( (0-2): 3 x Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1)) ) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): Mish() ) ) )) 9 -> ('gcn.conv_layers', ModuleList( (0): unit_gcn( (conv_list): ModuleList( (0-2): 3 x Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1)) ) (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): Mish() ) (1): unit_gcn( (conv_list): ModuleList( (0-2): 3 x Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1)) ) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): Mish() ) (2): unit_gcn( (conv_list): ModuleList( (0-2): 3 x Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1)) ) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): Mish() ) )) 10 -> ('gcn.conv_layers.0', unit_gcn( (conv_list): ModuleList( (0-2): 3 x Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1)) ) (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): Mish() )) 11 -> ('gcn.conv_layers.0.conv_list', ModuleList( (0-2): 3 x Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1)) )) 12 -> ('gcn.conv_layers.0.conv_list.0', Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1))) 13 -> ('gcn.conv_layers.0.conv_list.1', Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1))) 14 -> ('gcn.conv_layers.0.conv_list.2', Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1))) 15 -> ('gcn.conv_layers.0.bn', BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)) 16 -> ('gcn.conv_layers.0.act', Mish()) 17 -> ('gcn.conv_layers.1', unit_gcn( (conv_list): ModuleList( (0-2): 3 x Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1)) ) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): Mish() )) 18 -> ('gcn.conv_layers.1.conv_list', ModuleList( (0-2): 3 x Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1)) )) 19 -> ('gcn.conv_layers.1.conv_list.0', Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1))) 20 -> ('gcn.conv_layers.1.conv_list.1', Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1))) 21 -> ('gcn.conv_layers.1.conv_list.2', Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1))) 22 -> ('gcn.conv_layers.1.bn', BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)) 23 -> ('gcn.conv_layers.1.act', Mish()) 24 -> ('gcn.conv_layers.2', unit_gcn( (conv_list): ModuleList( (0-2): 3 x Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1)) ) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): Mish() )) 25 -> ('gcn.conv_layers.2.conv_list', ModuleList( (0-2): 3 x Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1)) )) 26 -> ('gcn.conv_layers.2.conv_list.0', Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1))) 27 -> ('gcn.conv_layers.2.conv_list.1', Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1))) 28 -> ('gcn.conv_layers.2.conv_list.2', Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1))) 29 -> ('gcn.conv_layers.2.bn', BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)) 30 -> ('gcn.conv_layers.2.act', Mish()) 31 -> ('encoder', MoE_TransformerGraphEncoder( (layers): ModuleList( (0-3): 4 x MoE_TransformerGraphEncoderLayer( (attention): Residual( (sublayer): MultiHeadAttention( (heads): ModuleList( (0-7): 8 x AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) ) ) (linear): Linear(in_features=256, out_features=128, bias=True) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (feed_forward): Residual( (sublayer): MoeLayer( (experts): ModuleList( (0-7): 8 x FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) ) ) (gate): Linear(in_features=128, out_features=8, bias=False) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) ) ) (positional_encoder): PositionalEncoder( (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) ) )) 32 -> ('encoder.layers', ModuleList( (0-3): 4 x MoE_TransformerGraphEncoderLayer( (attention): Residual( (sublayer): MultiHeadAttention( (heads): ModuleList( (0-7): 8 x AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) ) ) (linear): Linear(in_features=256, out_features=128, bias=True) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (feed_forward): Residual( (sublayer): MoeLayer( (experts): ModuleList( (0-7): 8 x FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) ) ) (gate): Linear(in_features=128, out_features=8, bias=False) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) ) )) 33 -> ('encoder.layers.0', MoE_TransformerGraphEncoderLayer( (attention): Residual( (sublayer): MultiHeadAttention( (heads): ModuleList( (0-7): 8 x AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) ) ) (linear): Linear(in_features=256, out_features=128, bias=True) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (feed_forward): Residual( (sublayer): MoeLayer( (experts): ModuleList( (0-7): 8 x FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) ) ) (gate): Linear(in_features=128, out_features=8, bias=False) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) )) 34 -> ('encoder.layers.0.attention', Residual( (sublayer): MultiHeadAttention( (heads): ModuleList( (0-7): 8 x AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) ) ) (linear): Linear(in_features=256, out_features=128, bias=True) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) )) 35 -> ('encoder.layers.0.attention.sublayer', MultiHeadAttention( (heads): ModuleList( (0-7): 8 x AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) ) ) (linear): Linear(in_features=256, out_features=128, bias=True) )) 36 -> ('encoder.layers.0.attention.sublayer.heads', ModuleList( (0-7): 8 x AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) ) )) 37 -> ('encoder.layers.0.attention.sublayer.heads.0', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 38 -> ('encoder.layers.0.attention.sublayer.heads.0.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 39 -> ('encoder.layers.0.attention.sublayer.heads.0.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 40 -> ('encoder.layers.0.attention.sublayer.heads.0.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 41 -> ('encoder.layers.0.attention.sublayer.heads.1', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 42 -> ('encoder.layers.0.attention.sublayer.heads.1.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 43 -> ('encoder.layers.0.attention.sublayer.heads.1.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 44 -> ('encoder.layers.0.attention.sublayer.heads.1.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 45 -> ('encoder.layers.0.attention.sublayer.heads.2', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 46 -> ('encoder.layers.0.attention.sublayer.heads.2.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 47 -> ('encoder.layers.0.attention.sublayer.heads.2.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 48 -> ('encoder.layers.0.attention.sublayer.heads.2.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 49 -> ('encoder.layers.0.attention.sublayer.heads.3', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 50 -> ('encoder.layers.0.attention.sublayer.heads.3.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 51 -> ('encoder.layers.0.attention.sublayer.heads.3.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 52 -> ('encoder.layers.0.attention.sublayer.heads.3.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 53 -> ('encoder.layers.0.attention.sublayer.heads.4', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 54 -> ('encoder.layers.0.attention.sublayer.heads.4.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 55 -> ('encoder.layers.0.attention.sublayer.heads.4.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 56 -> ('encoder.layers.0.attention.sublayer.heads.4.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 57 -> ('encoder.layers.0.attention.sublayer.heads.5', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 58 -> ('encoder.layers.0.attention.sublayer.heads.5.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 59 -> ('encoder.layers.0.attention.sublayer.heads.5.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 60 -> ('encoder.layers.0.attention.sublayer.heads.5.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 61 -> ('encoder.layers.0.attention.sublayer.heads.6', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 62 -> ('encoder.layers.0.attention.sublayer.heads.6.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 63 -> ('encoder.layers.0.attention.sublayer.heads.6.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 64 -> ('encoder.layers.0.attention.sublayer.heads.6.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 65 -> ('encoder.layers.0.attention.sublayer.heads.7', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 66 -> ('encoder.layers.0.attention.sublayer.heads.7.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 67 -> ('encoder.layers.0.attention.sublayer.heads.7.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 68 -> ('encoder.layers.0.attention.sublayer.heads.7.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 69 -> ('encoder.layers.0.attention.sublayer.linear', Linear(in_features=256, out_features=128, bias=True)) 70 -> ('encoder.layers.0.attention.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) 71 -> ('encoder.layers.0.attention.dropout', Dropout(p=0.1, inplace=False)) 72 -> ('encoder.layers.0.feed_forward', Residual( (sublayer): MoeLayer( (experts): ModuleList( (0-7): 8 x FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) ) ) (gate): Linear(in_features=128, out_features=8, bias=False) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) )) 73 -> ('encoder.layers.0.feed_forward.sublayer', MoeLayer( (experts): ModuleList( (0-7): 8 x FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) ) ) (gate): Linear(in_features=128, out_features=8, bias=False) )) 74 -> ('encoder.layers.0.feed_forward.sublayer.experts', ModuleList( (0-7): 8 x FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) ) )) 75 -> ('encoder.layers.0.feed_forward.sublayer.experts.0', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 76 -> ('encoder.layers.0.feed_forward.sublayer.experts.0.w1', Linear(in_features=128, out_features=512, bias=False)) 77 -> ('encoder.layers.0.feed_forward.sublayer.experts.0.w2', Linear(in_features=512, out_features=128, bias=False)) 78 -> ('encoder.layers.0.feed_forward.sublayer.experts.0.w3', Linear(in_features=128, out_features=512, bias=False)) 79 -> ('encoder.layers.0.feed_forward.sublayer.experts.1', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 80 -> ('encoder.layers.0.feed_forward.sublayer.experts.1.w1', Linear(in_features=128, out_features=512, bias=False)) 81 -> ('encoder.layers.0.feed_forward.sublayer.experts.1.w2', Linear(in_features=512, out_features=128, bias=False)) 82 -> ('encoder.layers.0.feed_forward.sublayer.experts.1.w3', Linear(in_features=128, out_features=512, bias=False)) 83 -> ('encoder.layers.0.feed_forward.sublayer.experts.2', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 84 -> ('encoder.layers.0.feed_forward.sublayer.experts.2.w1', Linear(in_features=128, out_features=512, bias=False)) 85 -> ('encoder.layers.0.feed_forward.sublayer.experts.2.w2', Linear(in_features=512, out_features=128, bias=False)) 86 -> ('encoder.layers.0.feed_forward.sublayer.experts.2.w3', Linear(in_features=128, out_features=512, bias=False)) 87 -> ('encoder.layers.0.feed_forward.sublayer.experts.3', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 88 -> ('encoder.layers.0.feed_forward.sublayer.experts.3.w1', Linear(in_features=128, out_features=512, bias=False)) 89 -> ('encoder.layers.0.feed_forward.sublayer.experts.3.w2', Linear(in_features=512, out_features=128, bias=False)) 90 -> ('encoder.layers.0.feed_forward.sublayer.experts.3.w3', Linear(in_features=128, out_features=512, bias=False)) 91 -> ('encoder.layers.0.feed_forward.sublayer.experts.4', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 92 -> ('encoder.layers.0.feed_forward.sublayer.experts.4.w1', Linear(in_features=128, out_features=512, bias=False)) 93 -> ('encoder.layers.0.feed_forward.sublayer.experts.4.w2', Linear(in_features=512, out_features=128, bias=False)) 94 -> ('encoder.layers.0.feed_forward.sublayer.experts.4.w3', Linear(in_features=128, out_features=512, bias=False)) 95 -> ('encoder.layers.0.feed_forward.sublayer.experts.5', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 96 -> ('encoder.layers.0.feed_forward.sublayer.experts.5.w1', Linear(in_features=128, out_features=512, bias=False)) 97 -> ('encoder.layers.0.feed_forward.sublayer.experts.5.w2', Linear(in_features=512, out_features=128, bias=False)) 98 -> ('encoder.layers.0.feed_forward.sublayer.experts.5.w3', Linear(in_features=128, out_features=512, bias=False)) 99 -> ('encoder.layers.0.feed_forward.sublayer.experts.6', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 100 -> ('encoder.layers.0.feed_forward.sublayer.experts.6.w1', Linear(in_features=128, out_features=512, bias=False)) 101 -> ('encoder.layers.0.feed_forward.sublayer.experts.6.w2', Linear(in_features=512, out_features=128, bias=False)) 102 -> ('encoder.layers.0.feed_forward.sublayer.experts.6.w3', Linear(in_features=128, out_features=512, bias=False)) 103 -> ('encoder.layers.0.feed_forward.sublayer.experts.7', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 104 -> ('encoder.layers.0.feed_forward.sublayer.experts.7.w1', Linear(in_features=128, out_features=512, bias=False)) 105 -> ('encoder.layers.0.feed_forward.sublayer.experts.7.w2', Linear(in_features=512, out_features=128, bias=False)) 106 -> ('encoder.layers.0.feed_forward.sublayer.experts.7.w3', Linear(in_features=128, out_features=512, bias=False)) 107 -> ('encoder.layers.0.feed_forward.sublayer.gate', Linear(in_features=128, out_features=8, bias=False)) 108 -> ('encoder.layers.0.feed_forward.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) 109 -> ('encoder.layers.0.feed_forward.dropout', Dropout(p=0.1, inplace=False)) 110 -> ('encoder.layers.0.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) 111 -> ('encoder.layers.1', MoE_TransformerGraphEncoderLayer( (attention): Residual( (sublayer): MultiHeadAttention( (heads): ModuleList( (0-7): 8 x AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) ) ) (linear): Linear(in_features=256, out_features=128, bias=True) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (feed_forward): Residual( (sublayer): MoeLayer( (experts): ModuleList( (0-7): 8 x FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) ) ) (gate): Linear(in_features=128, out_features=8, bias=False) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) )) 112 -> ('encoder.layers.1.attention', Residual( (sublayer): MultiHeadAttention( (heads): ModuleList( (0-7): 8 x AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) ) ) (linear): Linear(in_features=256, out_features=128, bias=True) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) )) 113 -> ('encoder.layers.1.attention.sublayer', MultiHeadAttention( (heads): ModuleList( (0-7): 8 x AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) ) ) (linear): Linear(in_features=256, out_features=128, bias=True) )) 114 -> ('encoder.layers.1.attention.sublayer.heads', ModuleList( (0-7): 8 x AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) ) )) 115 -> ('encoder.layers.1.attention.sublayer.heads.0', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 116 -> ('encoder.layers.1.attention.sublayer.heads.0.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 117 -> ('encoder.layers.1.attention.sublayer.heads.0.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 118 -> ('encoder.layers.1.attention.sublayer.heads.0.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 119 -> ('encoder.layers.1.attention.sublayer.heads.1', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 120 -> ('encoder.layers.1.attention.sublayer.heads.1.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 121 -> ('encoder.layers.1.attention.sublayer.heads.1.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 122 -> ('encoder.layers.1.attention.sublayer.heads.1.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 123 -> ('encoder.layers.1.attention.sublayer.heads.2', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 124 -> ('encoder.layers.1.attention.sublayer.heads.2.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 125 -> ('encoder.layers.1.attention.sublayer.heads.2.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 126 -> ('encoder.layers.1.attention.sublayer.heads.2.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 127 -> ('encoder.layers.1.attention.sublayer.heads.3', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 128 -> ('encoder.layers.1.attention.sublayer.heads.3.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 129 -> ('encoder.layers.1.attention.sublayer.heads.3.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 130 -> ('encoder.layers.1.attention.sublayer.heads.3.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 131 -> ('encoder.layers.1.attention.sublayer.heads.4', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 132 -> ('encoder.layers.1.attention.sublayer.heads.4.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 133 -> ('encoder.layers.1.attention.sublayer.heads.4.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 134 -> ('encoder.layers.1.attention.sublayer.heads.4.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 135 -> ('encoder.layers.1.attention.sublayer.heads.5', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 136 -> ('encoder.layers.1.attention.sublayer.heads.5.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 137 -> ('encoder.layers.1.attention.sublayer.heads.5.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 138 -> ('encoder.layers.1.attention.sublayer.heads.5.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 139 -> ('encoder.layers.1.attention.sublayer.heads.6', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 140 -> ('encoder.layers.1.attention.sublayer.heads.6.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 141 -> ('encoder.layers.1.attention.sublayer.heads.6.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 142 -> ('encoder.layers.1.attention.sublayer.heads.6.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 143 -> ('encoder.layers.1.attention.sublayer.heads.7', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 144 -> ('encoder.layers.1.attention.sublayer.heads.7.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 145 -> ('encoder.layers.1.attention.sublayer.heads.7.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 146 -> ('encoder.layers.1.attention.sublayer.heads.7.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 147 -> ('encoder.layers.1.attention.sublayer.linear', Linear(in_features=256, out_features=128, bias=True)) 148 -> ('encoder.layers.1.attention.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) 149 -> ('encoder.layers.1.attention.dropout', Dropout(p=0.1, inplace=False)) 150 -> ('encoder.layers.1.feed_forward', Residual( (sublayer): MoeLayer( (experts): ModuleList( (0-7): 8 x FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) ) ) (gate): Linear(in_features=128, out_features=8, bias=False) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) )) 151 -> ('encoder.layers.1.feed_forward.sublayer', MoeLayer( (experts): ModuleList( (0-7): 8 x FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) ) ) (gate): Linear(in_features=128, out_features=8, bias=False) )) 152 -> ('encoder.layers.1.feed_forward.sublayer.experts', ModuleList( (0-7): 8 x FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) ) )) 153 -> ('encoder.layers.1.feed_forward.sublayer.experts.0', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 154 -> ('encoder.layers.1.feed_forward.sublayer.experts.0.w1', Linear(in_features=128, out_features=512, bias=False)) 155 -> ('encoder.layers.1.feed_forward.sublayer.experts.0.w2', Linear(in_features=512, out_features=128, bias=False)) 156 -> ('encoder.layers.1.feed_forward.sublayer.experts.0.w3', Linear(in_features=128, out_features=512, bias=False)) 157 -> ('encoder.layers.1.feed_forward.sublayer.experts.1', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 158 -> ('encoder.layers.1.feed_forward.sublayer.experts.1.w1', Linear(in_features=128, out_features=512, bias=False)) 159 -> ('encoder.layers.1.feed_forward.sublayer.experts.1.w2', Linear(in_features=512, out_features=128, bias=False)) 160 -> ('encoder.layers.1.feed_forward.sublayer.experts.1.w3', Linear(in_features=128, out_features=512, bias=False)) 161 -> ('encoder.layers.1.feed_forward.sublayer.experts.2', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 162 -> ('encoder.layers.1.feed_forward.sublayer.experts.2.w1', Linear(in_features=128, out_features=512, bias=False)) 163 -> ('encoder.layers.1.feed_forward.sublayer.experts.2.w2', Linear(in_features=512, out_features=128, bias=False)) 164 -> ('encoder.layers.1.feed_forward.sublayer.experts.2.w3', Linear(in_features=128, out_features=512, bias=False)) 165 -> ('encoder.layers.1.feed_forward.sublayer.experts.3', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 166 -> ('encoder.layers.1.feed_forward.sublayer.experts.3.w1', Linear(in_features=128, out_features=512, bias=False)) 167 -> ('encoder.layers.1.feed_forward.sublayer.experts.3.w2', Linear(in_features=512, out_features=128, bias=False)) 168 -> ('encoder.layers.1.feed_forward.sublayer.experts.3.w3', Linear(in_features=128, out_features=512, bias=False)) 169 -> ('encoder.layers.1.feed_forward.sublayer.experts.4', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 170 -> ('encoder.layers.1.feed_forward.sublayer.experts.4.w1', Linear(in_features=128, out_features=512, bias=False)) 171 -> ('encoder.layers.1.feed_forward.sublayer.experts.4.w2', Linear(in_features=512, out_features=128, bias=False)) 172 -> ('encoder.layers.1.feed_forward.sublayer.experts.4.w3', Linear(in_features=128, out_features=512, bias=False)) 173 -> ('encoder.layers.1.feed_forward.sublayer.experts.5', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 174 -> ('encoder.layers.1.feed_forward.sublayer.experts.5.w1', Linear(in_features=128, out_features=512, bias=False)) 175 -> ('encoder.layers.1.feed_forward.sublayer.experts.5.w2', Linear(in_features=512, out_features=128, bias=False)) 176 -> ('encoder.layers.1.feed_forward.sublayer.experts.5.w3', Linear(in_features=128, out_features=512, bias=False)) 177 -> ('encoder.layers.1.feed_forward.sublayer.experts.6', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 178 -> ('encoder.layers.1.feed_forward.sublayer.experts.6.w1', Linear(in_features=128, out_features=512, bias=False)) 179 -> ('encoder.layers.1.feed_forward.sublayer.experts.6.w2', Linear(in_features=512, out_features=128, bias=False)) 180 -> ('encoder.layers.1.feed_forward.sublayer.experts.6.w3', Linear(in_features=128, out_features=512, bias=False)) 181 -> ('encoder.layers.1.feed_forward.sublayer.experts.7', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 182 -> ('encoder.layers.1.feed_forward.sublayer.experts.7.w1', Linear(in_features=128, out_features=512, bias=False)) 183 -> ('encoder.layers.1.feed_forward.sublayer.experts.7.w2', Linear(in_features=512, out_features=128, bias=False)) 184 -> ('encoder.layers.1.feed_forward.sublayer.experts.7.w3', Linear(in_features=128, out_features=512, bias=False)) 185 -> ('encoder.layers.1.feed_forward.sublayer.gate', Linear(in_features=128, out_features=8, bias=False)) 186 -> ('encoder.layers.1.feed_forward.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) 187 -> ('encoder.layers.1.feed_forward.dropout', Dropout(p=0.1, inplace=False)) 188 -> ('encoder.layers.1.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) 189 -> ('encoder.layers.2', MoE_TransformerGraphEncoderLayer( (attention): Residual( (sublayer): MultiHeadAttention( (heads): ModuleList( (0-7): 8 x AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) ) ) (linear): Linear(in_features=256, out_features=128, bias=True) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (feed_forward): Residual( (sublayer): MoeLayer( (experts): ModuleList( (0-7): 8 x FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) ) ) (gate): Linear(in_features=128, out_features=8, bias=False) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) )) 190 -> ('encoder.layers.2.attention', Residual( (sublayer): MultiHeadAttention( (heads): ModuleList( (0-7): 8 x AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) ) ) (linear): Linear(in_features=256, out_features=128, bias=True) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) )) 191 -> ('encoder.layers.2.attention.sublayer', MultiHeadAttention( (heads): ModuleList( (0-7): 8 x AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) ) ) (linear): Linear(in_features=256, out_features=128, bias=True) )) 192 -> ('encoder.layers.2.attention.sublayer.heads', ModuleList( (0-7): 8 x AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) ) )) 193 -> ('encoder.layers.2.attention.sublayer.heads.0', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 194 -> ('encoder.layers.2.attention.sublayer.heads.0.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 195 -> ('encoder.layers.2.attention.sublayer.heads.0.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 196 -> ('encoder.layers.2.attention.sublayer.heads.0.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 197 -> ('encoder.layers.2.attention.sublayer.heads.1', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 198 -> ('encoder.layers.2.attention.sublayer.heads.1.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 199 -> ('encoder.layers.2.attention.sublayer.heads.1.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 200 -> ('encoder.layers.2.attention.sublayer.heads.1.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 201 -> ('encoder.layers.2.attention.sublayer.heads.2', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 202 -> ('encoder.layers.2.attention.sublayer.heads.2.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 203 -> ('encoder.layers.2.attention.sublayer.heads.2.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 204 -> ('encoder.layers.2.attention.sublayer.heads.2.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 205 -> ('encoder.layers.2.attention.sublayer.heads.3', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 206 -> ('encoder.layers.2.attention.sublayer.heads.3.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 207 -> ('encoder.layers.2.attention.sublayer.heads.3.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 208 -> ('encoder.layers.2.attention.sublayer.heads.3.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 209 -> ('encoder.layers.2.attention.sublayer.heads.4', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 210 -> ('encoder.layers.2.attention.sublayer.heads.4.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 211 -> ('encoder.layers.2.attention.sublayer.heads.4.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 212 -> ('encoder.layers.2.attention.sublayer.heads.4.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 213 -> ('encoder.layers.2.attention.sublayer.heads.5', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 214 -> ('encoder.layers.2.attention.sublayer.heads.5.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 215 -> ('encoder.layers.2.attention.sublayer.heads.5.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 216 -> ('encoder.layers.2.attention.sublayer.heads.5.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 217 -> ('encoder.layers.2.attention.sublayer.heads.6', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 218 -> ('encoder.layers.2.attention.sublayer.heads.6.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 219 -> ('encoder.layers.2.attention.sublayer.heads.6.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 220 -> ('encoder.layers.2.attention.sublayer.heads.6.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 221 -> ('encoder.layers.2.attention.sublayer.heads.7', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 222 -> ('encoder.layers.2.attention.sublayer.heads.7.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 223 -> ('encoder.layers.2.attention.sublayer.heads.7.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 224 -> ('encoder.layers.2.attention.sublayer.heads.7.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 225 -> ('encoder.layers.2.attention.sublayer.linear', Linear(in_features=256, out_features=128, bias=True)) 226 -> ('encoder.layers.2.attention.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) 227 -> ('encoder.layers.2.attention.dropout', Dropout(p=0.1, inplace=False)) 228 -> ('encoder.layers.2.feed_forward', Residual( (sublayer): MoeLayer( (experts): ModuleList( (0-7): 8 x FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) ) ) (gate): Linear(in_features=128, out_features=8, bias=False) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) )) 229 -> ('encoder.layers.2.feed_forward.sublayer', MoeLayer( (experts): ModuleList( (0-7): 8 x FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) ) ) (gate): Linear(in_features=128, out_features=8, bias=False) )) 230 -> ('encoder.layers.2.feed_forward.sublayer.experts', ModuleList( (0-7): 8 x FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) ) )) 231 -> ('encoder.layers.2.feed_forward.sublayer.experts.0', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 232 -> ('encoder.layers.2.feed_forward.sublayer.experts.0.w1', Linear(in_features=128, out_features=512, bias=False)) 233 -> ('encoder.layers.2.feed_forward.sublayer.experts.0.w2', Linear(in_features=512, out_features=128, bias=False)) 234 -> ('encoder.layers.2.feed_forward.sublayer.experts.0.w3', Linear(in_features=128, out_features=512, bias=False)) 235 -> ('encoder.layers.2.feed_forward.sublayer.experts.1', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 236 -> ('encoder.layers.2.feed_forward.sublayer.experts.1.w1', Linear(in_features=128, out_features=512, bias=False)) 237 -> ('encoder.layers.2.feed_forward.sublayer.experts.1.w2', Linear(in_features=512, out_features=128, bias=False)) 238 -> ('encoder.layers.2.feed_forward.sublayer.experts.1.w3', Linear(in_features=128, out_features=512, bias=False)) 239 -> ('encoder.layers.2.feed_forward.sublayer.experts.2', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 240 -> ('encoder.layers.2.feed_forward.sublayer.experts.2.w1', Linear(in_features=128, out_features=512, bias=False)) 241 -> ('encoder.layers.2.feed_forward.sublayer.experts.2.w2', Linear(in_features=512, out_features=128, bias=False)) 242 -> ('encoder.layers.2.feed_forward.sublayer.experts.2.w3', Linear(in_features=128, out_features=512, bias=False)) 243 -> ('encoder.layers.2.feed_forward.sublayer.experts.3', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 244 -> ('encoder.layers.2.feed_forward.sublayer.experts.3.w1', Linear(in_features=128, out_features=512, bias=False)) 245 -> ('encoder.layers.2.feed_forward.sublayer.experts.3.w2', Linear(in_features=512, out_features=128, bias=False)) 246 -> ('encoder.layers.2.feed_forward.sublayer.experts.3.w3', Linear(in_features=128, out_features=512, bias=False)) 247 -> ('encoder.layers.2.feed_forward.sublayer.experts.4', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 248 -> ('encoder.layers.2.feed_forward.sublayer.experts.4.w1', Linear(in_features=128, out_features=512, bias=False)) 249 -> ('encoder.layers.2.feed_forward.sublayer.experts.4.w2', Linear(in_features=512, out_features=128, bias=False)) 250 -> ('encoder.layers.2.feed_forward.sublayer.experts.4.w3', Linear(in_features=128, out_features=512, bias=False)) 251 -> ('encoder.layers.2.feed_forward.sublayer.experts.5', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 252 -> ('encoder.layers.2.feed_forward.sublayer.experts.5.w1', Linear(in_features=128, out_features=512, bias=False)) 253 -> ('encoder.layers.2.feed_forward.sublayer.experts.5.w2', Linear(in_features=512, out_features=128, bias=False)) 254 -> ('encoder.layers.2.feed_forward.sublayer.experts.5.w3', Linear(in_features=128, out_features=512, bias=False)) 255 -> ('encoder.layers.2.feed_forward.sublayer.experts.6', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 256 -> ('encoder.layers.2.feed_forward.sublayer.experts.6.w1', Linear(in_features=128, out_features=512, bias=False)) 257 -> ('encoder.layers.2.feed_forward.sublayer.experts.6.w2', Linear(in_features=512, out_features=128, bias=False)) 258 -> ('encoder.layers.2.feed_forward.sublayer.experts.6.w3', Linear(in_features=128, out_features=512, bias=False)) 259 -> ('encoder.layers.2.feed_forward.sublayer.experts.7', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 260 -> ('encoder.layers.2.feed_forward.sublayer.experts.7.w1', Linear(in_features=128, out_features=512, bias=False)) 261 -> ('encoder.layers.2.feed_forward.sublayer.experts.7.w2', Linear(in_features=512, out_features=128, bias=False)) 262 -> ('encoder.layers.2.feed_forward.sublayer.experts.7.w3', Linear(in_features=128, out_features=512, bias=False)) 263 -> ('encoder.layers.2.feed_forward.sublayer.gate', Linear(in_features=128, out_features=8, bias=False)) 264 -> ('encoder.layers.2.feed_forward.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) 265 -> ('encoder.layers.2.feed_forward.dropout', Dropout(p=0.1, inplace=False)) 266 -> ('encoder.layers.2.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) 267 -> ('encoder.layers.3', MoE_TransformerGraphEncoderLayer( (attention): Residual( (sublayer): MultiHeadAttention( (heads): ModuleList( (0-7): 8 x AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) ) ) (linear): Linear(in_features=256, out_features=128, bias=True) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (feed_forward): Residual( (sublayer): MoeLayer( (experts): ModuleList( (0-7): 8 x FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) ) ) (gate): Linear(in_features=128, out_features=8, bias=False) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) )) 268 -> ('encoder.layers.3.attention', Residual( (sublayer): MultiHeadAttention( (heads): ModuleList( (0-7): 8 x AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) ) ) (linear): Linear(in_features=256, out_features=128, bias=True) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) )) 269 -> ('encoder.layers.3.attention.sublayer', MultiHeadAttention( (heads): ModuleList( (0-7): 8 x AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) ) ) (linear): Linear(in_features=256, out_features=128, bias=True) )) 270 -> ('encoder.layers.3.attention.sublayer.heads', ModuleList( (0-7): 8 x AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) ) )) 271 -> ('encoder.layers.3.attention.sublayer.heads.0', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 272 -> ('encoder.layers.3.attention.sublayer.heads.0.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 273 -> ('encoder.layers.3.attention.sublayer.heads.0.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 274 -> ('encoder.layers.3.attention.sublayer.heads.0.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 275 -> ('encoder.layers.3.attention.sublayer.heads.1', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 276 -> ('encoder.layers.3.attention.sublayer.heads.1.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 277 -> ('encoder.layers.3.attention.sublayer.heads.1.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 278 -> ('encoder.layers.3.attention.sublayer.heads.1.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 279 -> ('encoder.layers.3.attention.sublayer.heads.2', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 280 -> ('encoder.layers.3.attention.sublayer.heads.2.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 281 -> ('encoder.layers.3.attention.sublayer.heads.2.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 282 -> ('encoder.layers.3.attention.sublayer.heads.2.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 283 -> ('encoder.layers.3.attention.sublayer.heads.3', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 284 -> ('encoder.layers.3.attention.sublayer.heads.3.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 285 -> ('encoder.layers.3.attention.sublayer.heads.3.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 286 -> ('encoder.layers.3.attention.sublayer.heads.3.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 287 -> ('encoder.layers.3.attention.sublayer.heads.4', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 288 -> ('encoder.layers.3.attention.sublayer.heads.4.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 289 -> ('encoder.layers.3.attention.sublayer.heads.4.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 290 -> ('encoder.layers.3.attention.sublayer.heads.4.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 291 -> ('encoder.layers.3.attention.sublayer.heads.5', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 292 -> ('encoder.layers.3.attention.sublayer.heads.5.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 293 -> ('encoder.layers.3.attention.sublayer.heads.5.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 294 -> ('encoder.layers.3.attention.sublayer.heads.5.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 295 -> ('encoder.layers.3.attention.sublayer.heads.6', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 296 -> ('encoder.layers.3.attention.sublayer.heads.6.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 297 -> ('encoder.layers.3.attention.sublayer.heads.6.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 298 -> ('encoder.layers.3.attention.sublayer.heads.6.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 299 -> ('encoder.layers.3.attention.sublayer.heads.7', AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) )) 300 -> ('encoder.layers.3.attention.sublayer.heads.7.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 301 -> ('encoder.layers.3.attention.sublayer.heads.7.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 302 -> ('encoder.layers.3.attention.sublayer.heads.7.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))) 303 -> ('encoder.layers.3.attention.sublayer.linear', Linear(in_features=256, out_features=128, bias=True)) 304 -> ('encoder.layers.3.attention.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) 305 -> ('encoder.layers.3.attention.dropout', Dropout(p=0.1, inplace=False)) 306 -> ('encoder.layers.3.feed_forward', Residual( (sublayer): MoeLayer( (experts): ModuleList( (0-7): 8 x FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) ) ) (gate): Linear(in_features=128, out_features=8, bias=False) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) )) 307 -> ('encoder.layers.3.feed_forward.sublayer', MoeLayer( (experts): ModuleList( (0-7): 8 x FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) ) ) (gate): Linear(in_features=128, out_features=8, bias=False) )) 308 -> ('encoder.layers.3.feed_forward.sublayer.experts', ModuleList( (0-7): 8 x FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) ) )) 309 -> ('encoder.layers.3.feed_forward.sublayer.experts.0', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 310 -> ('encoder.layers.3.feed_forward.sublayer.experts.0.w1', Linear(in_features=128, out_features=512, bias=False)) 311 -> ('encoder.layers.3.feed_forward.sublayer.experts.0.w2', Linear(in_features=512, out_features=128, bias=False)) 312 -> ('encoder.layers.3.feed_forward.sublayer.experts.0.w3', Linear(in_features=128, out_features=512, bias=False)) 313 -> ('encoder.layers.3.feed_forward.sublayer.experts.1', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 314 -> ('encoder.layers.3.feed_forward.sublayer.experts.1.w1', Linear(in_features=128, out_features=512, bias=False)) 315 -> ('encoder.layers.3.feed_forward.sublayer.experts.1.w2', Linear(in_features=512, out_features=128, bias=False)) 316 -> ('encoder.layers.3.feed_forward.sublayer.experts.1.w3', Linear(in_features=128, out_features=512, bias=False)) 317 -> ('encoder.layers.3.feed_forward.sublayer.experts.2', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 318 -> ('encoder.layers.3.feed_forward.sublayer.experts.2.w1', Linear(in_features=128, out_features=512, bias=False)) 319 -> ('encoder.layers.3.feed_forward.sublayer.experts.2.w2', Linear(in_features=512, out_features=128, bias=False)) 320 -> ('encoder.layers.3.feed_forward.sublayer.experts.2.w3', Linear(in_features=128, out_features=512, bias=False)) 321 -> ('encoder.layers.3.feed_forward.sublayer.experts.3', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 322 -> ('encoder.layers.3.feed_forward.sublayer.experts.3.w1', Linear(in_features=128, out_features=512, bias=False)) 323 -> ('encoder.layers.3.feed_forward.sublayer.experts.3.w2', Linear(in_features=512, out_features=128, bias=False)) 324 -> ('encoder.layers.3.feed_forward.sublayer.experts.3.w3', Linear(in_features=128, out_features=512, bias=False)) 325 -> ('encoder.layers.3.feed_forward.sublayer.experts.4', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 326 -> ('encoder.layers.3.feed_forward.sublayer.experts.4.w1', Linear(in_features=128, out_features=512, bias=False)) 327 -> ('encoder.layers.3.feed_forward.sublayer.experts.4.w2', Linear(in_features=512, out_features=128, bias=False)) 328 -> ('encoder.layers.3.feed_forward.sublayer.experts.4.w3', Linear(in_features=128, out_features=512, bias=False)) 329 -> ('encoder.layers.3.feed_forward.sublayer.experts.5', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 330 -> ('encoder.layers.3.feed_forward.sublayer.experts.5.w1', Linear(in_features=128, out_features=512, bias=False)) 331 -> ('encoder.layers.3.feed_forward.sublayer.experts.5.w2', Linear(in_features=512, out_features=128, bias=False)) 332 -> ('encoder.layers.3.feed_forward.sublayer.experts.5.w3', Linear(in_features=128, out_features=512, bias=False)) 333 -> ('encoder.layers.3.feed_forward.sublayer.experts.6', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 334 -> ('encoder.layers.3.feed_forward.sublayer.experts.6.w1', Linear(in_features=128, out_features=512, bias=False)) 335 -> ('encoder.layers.3.feed_forward.sublayer.experts.6.w2', Linear(in_features=512, out_features=128, bias=False)) 336 -> ('encoder.layers.3.feed_forward.sublayer.experts.6.w3', Linear(in_features=128, out_features=512, bias=False)) 337 -> ('encoder.layers.3.feed_forward.sublayer.experts.7', FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) )) 338 -> ('encoder.layers.3.feed_forward.sublayer.experts.7.w1', Linear(in_features=128, out_features=512, bias=False)) 339 -> ('encoder.layers.3.feed_forward.sublayer.experts.7.w2', Linear(in_features=512, out_features=128, bias=False)) 340 -> ('encoder.layers.3.feed_forward.sublayer.experts.7.w3', Linear(in_features=128, out_features=512, bias=False)) 341 -> ('encoder.layers.3.feed_forward.sublayer.gate', Linear(in_features=128, out_features=8, bias=False)) 342 -> ('encoder.layers.3.feed_forward.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) 343 -> ('encoder.layers.3.feed_forward.dropout', Dropout(p=0.1, inplace=False)) 344 -> ('encoder.layers.3.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) 345 -> ('encoder.positional_encoder', PositionalEncoder( (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) )) 346 -> ('encoder.positional_encoder.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) 347 -> ('out', Sequential( (0): Linear(in_features=128, out_features=128, bias=True) (1): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (2): Linear(in_features=128, out_features=14, bias=True) )) 348 -> ('out.0', Linear(in_features=128, out_features=128, bias=True)) 349 -> ('out.1', LayerNorm((128,), eps=1e-05, elementwise_affine=True)) 350 -> ('out.2', Linear(in_features=128, out_features=14, bias=True)) Counting the model summary and the Number of parameters MoE_GCN model model_summary : model_summary Layer_name Number of Parameters ==================================================================================================== MulticlassAccuracy() 1548 MulticlassAccuracy() 128 MulticlassAccuracy() 128 MulticlassF1Score() 64 MulticlassF1Score() 1484 MulticlassF1Score() 2112 MulticlassConfusionMatrix() 2112 SGCN( (conv_layers): ModuleList( (0): unit_gcn( (conv_list): ModuleList( (0-2): 3 x Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1)) ) (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): Mish() ) (1): unit_gcn( (conv_list): ModuleList( (0-2): 3 x Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1)) ) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): Mish() ) (2): unit_gcn( (conv_list): ModuleList( (0-2): 3 x Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1)) ) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): Mish() ) ) ) 2112 MoE_TransformerGraphEncoder( (layers): ModuleList( (0-3): 4 x MoE_TransformerGraphEncoderLayer( (attention): Residual( (sublayer): MultiHeadAttention( (heads): ModuleList( (0-7): 8 x AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) ) ) (linear): Linear(in_features=256, out_features=128, bias=True) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (feed_forward): Residual( (sublayer): MoeLayer( (experts): ModuleList( (0-7): 8 x FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) ) ) (gate): Linear(in_features=128, out_features=8, bias=False) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) ) ) (positional_encoder): PositionalEncoder( (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) ) ) 128 Sequential( (0): Linear(in_features=128, out_features=128, bias=True) (1): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (2): Linear(in_features=128, out_features=14, bias=True) ) 9644 ==================================================================================================== Total Params:19460 model_summary Layer_name Number of Parameters ==================================================================================================== MulticlassAccuracy() 1548 MulticlassAccuracy() 128 MulticlassAccuracy() 128 MulticlassF1Score() 64 MulticlassF1Score() 1484 MulticlassF1Score() 2112 MulticlassConfusionMatrix() 2112 SGCN( (conv_layers): ModuleList( (0): unit_gcn( (conv_list): ModuleList( (0-2): 3 x Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1)) ) (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): Mish() ) (1): unit_gcn( (conv_list): ModuleList( (0-2): 3 x Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1)) ) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): Mish() ) (2): unit_gcn( (conv_list): ModuleList( (0-2): 3 x Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1)) ) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): Mish() ) ) ) 2112 MoE_TransformerGraphEncoder( (layers): ModuleList( (0-3): 4 x MoE_TransformerGraphEncoderLayer( (attention): Residual( (sublayer): MultiHeadAttention( (heads): ModuleList( (0-7): 8 x AttentionHead( (q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) ) ) (linear): Linear(in_features=256, out_features=128, bias=True) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (feed_forward): Residual( (sublayer): MoeLayer( (experts): ModuleList( (0-7): 8 x FeedForward( (w1): Linear(in_features=128, out_features=512, bias=False) (w2): Linear(in_features=512, out_features=128, bias=False) (w3): Linear(in_features=128, out_features=512, bias=False) ) ) (gate): Linear(in_features=128, out_features=8, bias=False) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) ) ) (positional_encoder): PositionalEncoder( (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) ) ) 128 Sequential( (0): Linear(in_features=128, out_features=128, bias=True) (1): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (2): Linear(in_features=128, out_features=14, bias=True) ) 9644 ==================================================================================================== Total Params:19460 Counting the parameters MoE_GCN model +------------------------------------------------------------+------------+ | Modules | Parameters | +------------------------------------------------------------+------------+ | gcn.conv_layers.0.mask | 1452 | | gcn.conv_layers.0.conv_list.0.weight | 96 | | gcn.conv_layers.0.conv_list.0.bias | 32 | | gcn.conv_layers.0.conv_list.1.weight | 96 | | gcn.conv_layers.0.conv_list.1.bias | 32 | | gcn.conv_layers.0.conv_list.2.weight | 96 | | gcn.conv_layers.0.conv_list.2.bias | 32 | | gcn.conv_layers.0.bn.weight | 32 | | gcn.conv_layers.0.bn.bias | 32 | | gcn.conv_layers.1.mask | 1452 | | gcn.conv_layers.1.conv_list.0.weight | 2048 | | gcn.conv_layers.1.conv_list.0.bias | 64 | | gcn.conv_layers.1.conv_list.1.weight | 2048 | | gcn.conv_layers.1.conv_list.1.bias | 64 | | gcn.conv_layers.1.conv_list.2.weight | 2048 | | gcn.conv_layers.1.conv_list.2.bias | 64 | | gcn.conv_layers.1.bn.weight | 64 | | gcn.conv_layers.1.bn.bias | 64 | | gcn.conv_layers.2.mask | 1452 | | gcn.conv_layers.2.conv_list.0.weight | 8192 | | gcn.conv_layers.2.conv_list.0.bias | 128 | | gcn.conv_layers.2.conv_list.1.weight | 8192 | | gcn.conv_layers.2.conv_list.1.bias | 128 | | gcn.conv_layers.2.conv_list.2.weight | 8192 | | gcn.conv_layers.2.conv_list.2.bias | 128 | | gcn.conv_layers.2.bn.weight | 128 | | gcn.conv_layers.2.bn.bias | 128 | | encoder.layers.0.attention.sublayer.heads.0.q_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.0.q_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.0.k_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.0.k_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.0.v_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.0.v_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.1.q_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.1.q_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.1.k_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.1.k_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.1.v_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.1.v_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.2.q_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.2.q_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.2.k_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.2.k_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.2.v_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.2.v_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.3.q_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.3.q_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.3.k_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.3.k_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.3.v_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.3.v_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.4.q_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.4.q_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.4.k_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.4.k_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.4.v_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.4.v_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.5.q_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.5.q_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.5.k_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.5.k_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.5.v_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.5.v_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.6.q_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.6.q_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.6.k_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.6.k_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.6.v_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.6.v_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.7.q_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.7.q_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.7.k_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.7.k_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.7.v_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.7.v_conv.bias | 32 | | encoder.layers.0.attention.sublayer.linear.weight | 32768 | | encoder.layers.0.attention.sublayer.linear.bias | 128 | | encoder.layers.0.attention.norm.weight | 128 | | encoder.layers.0.attention.norm.bias | 128 | | encoder.layers.0.feed_forward.sublayer.experts.0.w1.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.0.w2.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.0.w3.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.1.w1.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.1.w2.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.1.w3.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.2.w1.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.2.w2.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.2.w3.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.3.w1.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.3.w2.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.3.w3.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.4.w1.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.4.w2.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.4.w3.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.5.w1.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.5.w2.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.5.w3.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.6.w1.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.6.w2.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.6.w3.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.7.w1.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.7.w2.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.7.w3.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.gate.weight | 1024 | | encoder.layers.0.feed_forward.norm.weight | 128 | | encoder.layers.0.feed_forward.norm.bias | 128 | | encoder.layers.0.norm.weight | 128 | | encoder.layers.0.norm.bias | 128 | | encoder.layers.1.attention.sublayer.heads.0.q_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.0.q_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.0.k_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.0.k_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.0.v_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.0.v_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.1.q_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.1.q_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.1.k_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.1.k_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.1.v_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.1.v_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.2.q_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.2.q_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.2.k_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.2.k_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.2.v_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.2.v_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.3.q_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.3.q_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.3.k_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.3.k_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.3.v_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.3.v_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.4.q_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.4.q_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.4.k_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.4.k_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.4.v_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.4.v_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.5.q_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.5.q_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.5.k_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.5.k_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.5.v_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.5.v_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.6.q_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.6.q_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.6.k_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.6.k_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.6.v_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.6.v_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.7.q_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.7.q_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.7.k_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.7.k_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.7.v_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.7.v_conv.bias | 32 | | encoder.layers.1.attention.sublayer.linear.weight | 32768 | | encoder.layers.1.attention.sublayer.linear.bias | 128 | | encoder.layers.1.attention.norm.weight | 128 | | encoder.layers.1.attention.norm.bias | 128 | | encoder.layers.1.feed_forward.sublayer.experts.0.w1.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.0.w2.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.0.w3.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.1.w1.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.1.w2.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.1.w3.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.2.w1.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.2.w2.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.2.w3.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.3.w1.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.3.w2.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.3.w3.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.4.w1.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.4.w2.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.4.w3.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.5.w1.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.5.w2.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.5.w3.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.6.w1.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.6.w2.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.6.w3.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.7.w1.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.7.w2.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.7.w3.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.gate.weight | 1024 | | encoder.layers.1.feed_forward.norm.weight | 128 | | encoder.layers.1.feed_forward.norm.bias | 128 | | encoder.layers.1.norm.weight | 128 | | encoder.layers.1.norm.bias | 128 | | encoder.layers.2.attention.sublayer.heads.0.q_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.0.q_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.0.k_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.0.k_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.0.v_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.0.v_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.1.q_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.1.q_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.1.k_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.1.k_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.1.v_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.1.v_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.2.q_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.2.q_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.2.k_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.2.k_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.2.v_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.2.v_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.3.q_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.3.q_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.3.k_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.3.k_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.3.v_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.3.v_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.4.q_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.4.q_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.4.k_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.4.k_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.4.v_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.4.v_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.5.q_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.5.q_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.5.k_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.5.k_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.5.v_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.5.v_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.6.q_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.6.q_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.6.k_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.6.k_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.6.v_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.6.v_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.7.q_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.7.q_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.7.k_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.7.k_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.7.v_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.7.v_conv.bias | 32 | | encoder.layers.2.attention.sublayer.linear.weight | 32768 | | encoder.layers.2.attention.sublayer.linear.bias | 128 | | encoder.layers.2.attention.norm.weight | 128 | | encoder.layers.2.attention.norm.bias | 128 | | encoder.layers.2.feed_forward.sublayer.experts.0.w1.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.0.w2.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.0.w3.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.1.w1.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.1.w2.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.1.w3.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.2.w1.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.2.w2.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.2.w3.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.3.w1.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.3.w2.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.3.w3.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.4.w1.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.4.w2.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.4.w3.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.5.w1.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.5.w2.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.5.w3.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.6.w1.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.6.w2.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.6.w3.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.7.w1.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.7.w2.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.7.w3.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.gate.weight | 1024 | | encoder.layers.2.feed_forward.norm.weight | 128 | | encoder.layers.2.feed_forward.norm.bias | 128 | | encoder.layers.2.norm.weight | 128 | | encoder.layers.2.norm.bias | 128 | | encoder.layers.3.attention.sublayer.heads.0.q_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.0.q_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.0.k_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.0.k_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.0.v_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.0.v_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.1.q_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.1.q_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.1.k_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.1.k_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.1.v_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.1.v_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.2.q_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.2.q_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.2.k_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.2.k_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.2.v_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.2.v_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.3.q_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.3.q_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.3.k_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.3.k_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.3.v_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.3.v_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.4.q_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.4.q_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.4.k_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.4.k_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.4.v_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.4.v_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.5.q_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.5.q_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.5.k_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.5.k_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.5.v_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.5.v_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.6.q_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.6.q_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.6.k_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.6.k_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.6.v_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.6.v_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.7.q_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.7.q_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.7.k_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.7.k_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.7.v_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.7.v_conv.bias | 32 | | encoder.layers.3.attention.sublayer.linear.weight | 32768 | | encoder.layers.3.attention.sublayer.linear.bias | 128 | | encoder.layers.3.attention.norm.weight | 128 | | encoder.layers.3.attention.norm.bias | 128 | | encoder.layers.3.feed_forward.sublayer.experts.0.w1.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.0.w2.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.0.w3.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.1.w1.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.1.w2.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.1.w3.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.2.w1.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.2.w2.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.2.w3.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.3.w1.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.3.w2.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.3.w3.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.4.w1.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.4.w2.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.4.w3.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.5.w1.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.5.w2.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.5.w3.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.6.w1.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.6.w2.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.6.w3.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.7.w1.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.7.w2.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.7.w3.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.gate.weight | 1024 | | encoder.layers.3.feed_forward.norm.weight | 128 | | encoder.layers.3.feed_forward.norm.bias | 128 | | encoder.layers.3.norm.weight | 128 | | encoder.layers.3.norm.bias | 128 | | encoder.positional_encoder.norm.weight | 128 | | encoder.positional_encoder.norm.bias | 128 | | out.0.weight | 16384 | | out.0.bias | 128 | | out.1.weight | 128 | | out.1.bias | 128 | | out.2.weight | 1792 | | out.2.bias | 14 | +------------------------------------------------------------+------------+ Total Trainable Params: 6881810 | gcn.conv_layers.1.mask | 1452 | | gcn.conv_layers.1.conv_list.0.weight | 2048 | | gcn.conv_layers.1.conv_list.0.bias | 64 | | gcn.conv_layers.1.conv_list.1.weight | 2048 | | gcn.conv_layers.1.conv_list.1.bias | 64 | | gcn.conv_layers.1.conv_list.2.weight | 2048 | | gcn.conv_layers.1.conv_list.2.bias | 64 | | gcn.conv_layers.1.bn.weight | 64 | | gcn.conv_layers.1.bn.bias | 64 | | gcn.conv_layers.2.mask | 1452 | | gcn.conv_layers.2.conv_list.0.weight | 8192 | | gcn.conv_layers.2.conv_list.0.bias | 128 | | gcn.conv_layers.2.conv_list.1.weight | 8192 | | gcn.conv_layers.2.conv_list.1.bias | 128 | | gcn.conv_layers.2.conv_list.2.weight | 8192 | | gcn.conv_layers.2.conv_list.2.bias | 128 | | gcn.conv_layers.2.bn.weight | 128 | | gcn.conv_layers.2.bn.bias | 128 | | encoder.layers.0.attention.sublayer.heads.0.q_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.0.q_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.0.k_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.0.k_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.0.v_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.0.v_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.1.q_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.1.q_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.1.k_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.1.k_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.1.v_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.1.v_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.2.q_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.2.q_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.2.k_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.2.k_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.2.v_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.2.v_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.3.q_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.3.q_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.3.k_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.3.k_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.3.v_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.3.v_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.4.q_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.4.q_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.4.k_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.4.k_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.4.v_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.4.v_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.5.q_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.5.q_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.5.k_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.5.k_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.5.v_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.5.v_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.6.q_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.6.q_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.6.k_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.6.k_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.6.v_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.6.v_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.7.q_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.7.q_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.7.k_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.7.k_conv.bias | 32 | | encoder.layers.0.attention.sublayer.heads.7.v_conv.weight | 4096 | | encoder.layers.0.attention.sublayer.heads.7.v_conv.bias | 32 | | encoder.layers.0.attention.sublayer.linear.weight | 32768 | | encoder.layers.0.attention.sublayer.linear.bias | 128 | | encoder.layers.0.attention.norm.weight | 128 | | encoder.layers.0.attention.norm.bias | 128 | | encoder.layers.0.feed_forward.sublayer.experts.0.w1.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.0.w2.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.0.w3.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.1.w1.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.1.w2.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.1.w3.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.2.w1.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.2.w2.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.2.w3.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.3.w1.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.3.w2.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.3.w3.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.4.w1.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.4.w2.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.4.w3.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.5.w1.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.5.w2.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.5.w3.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.6.w1.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.6.w2.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.6.w3.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.7.w1.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.7.w2.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.experts.7.w3.weight | 65536 | | encoder.layers.0.feed_forward.sublayer.gate.weight | 1024 | | encoder.layers.0.feed_forward.norm.weight | 128 | | encoder.layers.0.feed_forward.norm.bias | 128 | | encoder.layers.0.norm.weight | 128 | | encoder.layers.0.norm.bias | 128 | | encoder.layers.1.attention.sublayer.heads.0.q_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.0.q_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.0.k_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.0.k_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.0.v_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.0.v_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.1.q_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.1.q_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.1.k_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.1.k_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.1.v_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.1.v_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.2.q_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.2.q_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.2.k_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.2.k_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.2.v_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.2.v_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.3.q_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.3.q_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.3.k_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.3.k_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.3.v_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.3.v_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.4.q_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.4.q_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.4.k_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.4.k_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.4.v_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.4.v_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.5.q_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.5.q_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.5.k_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.5.k_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.5.v_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.5.v_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.6.q_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.6.q_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.6.k_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.6.k_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.6.v_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.6.v_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.7.q_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.7.q_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.7.k_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.7.k_conv.bias | 32 | | encoder.layers.1.attention.sublayer.heads.7.v_conv.weight | 4096 | | encoder.layers.1.attention.sublayer.heads.7.v_conv.bias | 32 | | encoder.layers.1.attention.sublayer.linear.weight | 32768 | | encoder.layers.1.attention.sublayer.linear.bias | 128 | | encoder.layers.1.attention.norm.weight | 128 | | encoder.layers.1.attention.norm.bias | 128 | | encoder.layers.1.feed_forward.sublayer.experts.0.w1.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.0.w2.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.0.w3.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.1.w1.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.1.w2.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.1.w3.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.2.w1.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.2.w2.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.2.w3.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.3.w1.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.3.w2.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.3.w3.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.4.w1.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.4.w2.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.4.w3.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.5.w1.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.5.w2.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.5.w3.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.6.w1.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.6.w2.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.6.w3.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.7.w1.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.7.w2.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.experts.7.w3.weight | 65536 | | encoder.layers.1.feed_forward.sublayer.gate.weight | 1024 | | encoder.layers.1.feed_forward.norm.weight | 128 | | encoder.layers.1.feed_forward.norm.bias | 128 | | encoder.layers.1.norm.weight | 128 | | encoder.layers.1.norm.bias | 128 | | encoder.layers.2.attention.sublayer.heads.0.q_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.0.q_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.0.k_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.0.k_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.0.v_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.0.v_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.1.q_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.1.q_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.1.k_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.1.k_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.1.v_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.1.v_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.2.q_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.2.q_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.2.k_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.2.k_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.2.v_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.2.v_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.3.q_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.3.q_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.3.k_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.3.k_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.3.v_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.3.v_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.4.q_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.4.q_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.4.k_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.4.k_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.4.v_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.4.v_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.5.q_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.5.q_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.5.k_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.5.k_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.5.v_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.5.v_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.6.q_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.6.q_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.6.k_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.6.k_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.6.v_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.6.v_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.7.q_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.7.q_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.7.k_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.7.k_conv.bias | 32 | | encoder.layers.2.attention.sublayer.heads.7.v_conv.weight | 4096 | | encoder.layers.2.attention.sublayer.heads.7.v_conv.bias | 32 | | encoder.layers.2.attention.sublayer.linear.weight | 32768 | | encoder.layers.2.attention.sublayer.linear.bias | 128 | | encoder.layers.2.attention.norm.weight | 128 | | encoder.layers.2.attention.norm.bias | 128 | | encoder.layers.2.feed_forward.sublayer.experts.0.w1.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.0.w2.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.0.w3.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.1.w1.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.1.w2.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.1.w3.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.2.w1.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.2.w2.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.2.w3.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.3.w1.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.3.w2.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.3.w3.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.4.w1.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.4.w2.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.4.w3.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.5.w1.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.5.w2.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.5.w3.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.6.w1.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.6.w2.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.6.w3.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.7.w1.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.7.w2.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.experts.7.w3.weight | 65536 | | encoder.layers.2.feed_forward.sublayer.gate.weight | 1024 | | encoder.layers.2.feed_forward.norm.weight | 128 | | encoder.layers.2.feed_forward.norm.bias | 128 | | encoder.layers.2.norm.weight | 128 | | encoder.layers.2.norm.bias | 128 | | encoder.layers.3.attention.sublayer.heads.0.q_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.0.q_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.0.k_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.0.k_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.0.v_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.0.v_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.1.q_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.1.q_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.1.k_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.1.k_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.1.v_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.1.v_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.2.q_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.2.q_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.2.k_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.2.k_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.2.v_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.2.v_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.3.q_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.3.q_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.3.k_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.3.k_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.3.v_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.3.v_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.4.q_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.4.q_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.4.k_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.4.k_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.4.v_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.4.v_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.5.q_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.5.q_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.5.k_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.5.k_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.5.v_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.5.v_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.6.q_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.6.q_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.6.k_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.6.k_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.6.v_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.6.v_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.7.q_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.7.q_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.7.k_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.7.k_conv.bias | 32 | | encoder.layers.3.attention.sublayer.heads.7.v_conv.weight | 4096 | | encoder.layers.3.attention.sublayer.heads.7.v_conv.bias | 32 | | encoder.layers.3.attention.sublayer.linear.weight | 32768 | | encoder.layers.3.attention.sublayer.linear.bias | 128 | | encoder.layers.3.attention.norm.weight | 128 | | encoder.layers.3.attention.norm.bias | 128 | | encoder.layers.3.feed_forward.sublayer.experts.0.w1.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.0.w2.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.0.w3.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.1.w1.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.1.w2.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.1.w3.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.2.w1.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.2.w2.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.2.w3.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.3.w1.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.3.w2.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.3.w3.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.4.w1.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.4.w2.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.4.w3.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.5.w1.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.5.w2.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.5.w3.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.6.w1.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.6.w2.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.6.w3.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.7.w1.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.7.w2.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.experts.7.w3.weight | 65536 | | encoder.layers.3.feed_forward.sublayer.gate.weight | 1024 | | encoder.layers.3.feed_forward.norm.weight | 128 | | encoder.layers.3.feed_forward.norm.bias | 128 | | encoder.layers.3.norm.weight | 128 | | encoder.layers.3.norm.bias | 128 | | encoder.positional_encoder.norm.weight | 128 | | encoder.positional_encoder.norm.bias | 128 | | out.0.weight | 16384 | | out.0.bias | 128 | | out.1.weight | 128 | | out.1.bias | 128 | | out.2.weight | 1792 | | out.2.bias | 14 | +------------------------------------------------------------+------------+ Total Trainable Params: 6881810 FLOPs of the MoE_GCN model using OpenAI_flops : = 2083328 FLOPs FLOPs of the MoE_GCN model using DeepMind : = 20748288 FLOPs Collecting torchstat Downloading torchstat-0.0.7-py3-none-any.whl (11 kB) Requirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (from torchstat) (2.1.0+cu121) Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from torchstat) (1.23.5) Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from torchstat) (1.5.3) Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->torchstat) (2.8.2) Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->torchstat) (2023.3.post1) Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch->torchstat) (3.13.1) Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch->torchstat) (4.5.0) Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch->torchstat) (1.12) Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch->torchstat) (3.2.1) Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch->torchstat) (3.1.3) Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch->torchstat) (2023.6.0) Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch->torchstat) (2.1.0) Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas->torchstat) (1.16.0) Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch->torchstat) (2.1.4) Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch->torchstat) (1.3.0) +------------------------------------------------------------+------------+ | Modules | Parameters | +------------------------------------------------------------+------------+ | gcn.conv_layers.0.mask | 1452 | | gcn.conv_layers.0.conv_list.0.weight | 96 | | gcn.conv_layers.0.conv_list.0.bias | 32 | | gcn.conv_layers.0.conv_list.1.weight | 96 | | gcn.conv_layers.0.conv_list.1.bias | 32 | | gcn.conv_layers.0.conv_list.2.weight | 96 | | gcn.conv_layers.0.conv_list.2.bias | 32 | | gcn.conv_layers.0.bn.weight | 32 | | gcn.conv_layers.0.bn.bias | 32 | | gcn.conv_layers.0.bn.bias | 32 | | gcn.conv_layers.0.bn.bias | 32 | | gcn.conv_layers.0.bn.bias | 32 | | gcn.conv_layers.0.bn.bias | 32 | | gcn.conv_layers.0.bn.bias | 32 | | gcn.conv_layers.0.bn.bias | 32 | | gcn.conv_layers.0.bn.bias | 32 | | gcn.conv_layers.0.bn.bias | 32 | | gcn.conv_layers.0.bn.bias | 32 | | gcn.conv_layers.0.bn.bias | 32 | [ 0.4739, -0.4411, 0.5949],.bias | 32 | ..., [ 0.4923, -0.3621, 0.5645], [ 0.5081, -0.3883, 0.5798], [ 0.5182, -0.3990, 0.5934]]], [[[ 0.4553, -0.4093, 0.5347], [ 0.4465, -0.3465, 0.5095], [ 0.4286, -0.3852, 0.5241], ..., [ 0.4509, -0.3077, 0.4728], [ 0.4479, -0.3254, 0.4838], [ 0.4530, -0.3408, 0.4978]], [[ 0.4037, -0.3051, 0.4236], [ 0.3883, -0.2474, 0.4012], [ 0.3734, -0.2841, 0.4104], ..., [ 0.4092, -0.2127, 0.3748], [ 0.4185, -0.2356, 0.3855], [ 0.4252, -0.2515, 0.3991]], [[ 0.3537, -0.2618, 0.3555], [ 0.3258, -0.2090, 0.3282], [ 0.3217, -0.2452, 0.3408], ..., [ 0.3415, -0.1797, 0.2958], [ 0.3506, -0.2016, 0.3046], [ 0.3611, -0.2148, 0.3186]], ..., [[ 0.4537, -0.3549, 0.5033], [ 0.4227, -0.3063, 0.4904], [ 0.4194, -0.3419, 0.4946], ..., [ 0.4334, -0.2780, 0.4736], [ 0.4372, -0.3001, 0.4873], [ 0.4425, -0.3181, 0.4995]], [[ 0.4640, -0.3862, 0.5401], [ 0.4427, -0.3413, 0.5315], [ 0.4335, -0.3730, 0.5314], ..., [ 0.4738, -0.3113, 0.5228], [ 0.4929, -0.3358, 0.5369], [ 0.5051, -0.3468, 0.5482]], [[ 0.4655, -0.4041, 0.5552], [ 0.4422, -0.3530, 0.5404], [ 0.4380, -0.3914, 0.5487], ..., [ 0.4567, -0.3171, 0.5157], [ 0.4776, -0.3411, 0.5297], [ 0.4967, -0.3589, 0.5422]]], ..., [[[ 0.4761, -0.3570, 0.5141], [ 0.4648, -0.3141, 0.5161], [ 0.4576, -0.3426, 0.5166], ..., [ 0.5142, -0.2463, 0.5095], [ 0.5202, -0.2300, 0.5076], [ 0.5223, -0.2150, 0.5060]], [[ 0.3927, -0.2960, 0.4408], [ 0.3717, -0.2445, 0.4256], [ 0.3685, -0.2817, 0.4376], ..., [ 0.3918, -0.1666, 0.3913], [ 0.3900, -0.1506, 0.3827], [ 0.3875, -0.1388, 0.3751]], [[ 0.3311, -0.2876, 0.3770], [ 0.3134, -0.2340, 0.3532], [ 0.3020, -0.2676, 0.3640], ..., [ 0.3366, -0.1689, 0.3178], [ 0.3309, -0.1637, 0.3046], [ 0.3255, -0.1634, 0.2930]], ..., [[ 0.3970, -0.3313, 0.4459], [ 0.3739, -0.2776, 0.4274], [ 0.3668, -0.3141, 0.4362], ..., [ 0.3846, -0.2333, 0.3969], [ 0.3707, -0.2444, 0.3857], [ 0.3743, -0.2543, 0.3905]], [[ 0.4111, -0.3530, 0.4816], [ 0.3957, -0.3066, 0.4776], [ 0.3829, -0.3379, 0.4756], ..., [ 0.4256, -0.2702, 0.4716], [ 0.4197, -0.2851, 0.4655], [ 0.4262, -0.3008, 0.4746]], [[ 0.4676, -0.4057, 0.5600], [ 0.4560, -0.3730, 0.5605], [ 0.4467, -0.3971, 0.5617], ..., [ 0.4902, -0.2986, 0.5512], [ 0.4911, -0.2836, 0.5483], [ 0.5034, -0.2781, 0.5599]]], [[[ 0.4721, -0.4069, 0.5961], [ 0.4707, -0.3673, 0.6005], [ 0.4602, -0.3962, 0.6026], ..., [ 0.4986, -0.2846, 0.5858], [ 0.5057, -0.2652, 0.5839], [ 0.5095, -0.2495, 0.5822]], [[ 0.4048, -0.3119, 0.4769], [ 0.3951, -0.2639, 0.4670], [ 0.3832, -0.2988, 0.4758], ..., [ 0.4350, -0.1855, 0.4479], [ 0.4395, -0.1692, 0.4425], [ 0.4435, -0.1551, 0.4377]], [[ 0.3602, -0.2710, 0.3874], [ 0.3429, -0.2231, 0.3582], [ 0.3350, -0.2542, 0.3804], ..., [ 0.3495, -0.1652, 0.3141], [ 0.3383, -0.1565, 0.3000], [ 0.3286, -0.1488, 0.2876]], ..., [[ 0.4653, -0.3848, 0.5433], [ 0.4530, -0.3342, 0.5315], [ 0.4418, -0.3660, 0.5397], ..., [ 0.4616, -0.3031, 0.5096], [ 0.4674, -0.3284, 0.5250], [ 0.4782, -0.3437, 0.5373]], [[ 0.4766, -0.4024, 0.5700], [ 0.4672, -0.3583, 0.5674], [ 0.4549, -0.3893, 0.5701], ..., [ 0.4827, -0.3129, 0.5544], [ 0.4868, -0.3336, 0.5710], [ 0.4939, -0.3441, 0.5810]], [[ 0.4893, -0.4281, 0.5998], [ 0.4710, -0.3846, 0.5879], [ 0.4665, -0.4158, 0.5996], ..., [ 0.4830, -0.3421, 0.5596], [ 0.4835, -0.3640, 0.5749], [ 0.4894, -0.3746, 0.5868]]], [[[ 0.4661, -0.4360, 0.6053], [ 0.4644, -0.3942, 0.6059], [ 0.4469, -0.4223, 0.6035], ..., [ 0.5182, -0.3283, 0.6059], [ 0.5178, -0.3333, 0.6037], [ 0.5292, -0.3455, 0.6152]], [[ 0.4357, -0.3562, 0.5250], [ 0.4243, -0.3055, 0.5140], [ 0.4129, -0.3416, 0.5214], ..., [ 0.4613, -0.2225, 0.4948], [ 0.4654, -0.2058, 0.4900], [ 0.4691, -0.1910, 0.4858]], [[ 0.3920, -0.3078, 0.4274], [ 0.3592, -0.2533, 0.4066], [ 0.3542, -0.2891, 0.4083], ..., [ 0.3804, -0.2067, 0.3905], [ 0.3754, -0.2042, 0.3783], [ 0.3706, -0.2030, 0.3676]], ..., [[ 0.4513, -0.4002, 0.5616], [ 0.4358, -0.3517, 0.5431], [ 0.4258, -0.3837, 0.5538], ..., [ 0.4320, -0.3158, 0.5094], [ 0.4378, -0.3351, 0.5229], [ 0.4490, -0.3474, 0.5371]], [[ 0.4701, -0.4148, 0.5681], [ 0.4479, -0.3735, 0.5515], [ 0.4469, -0.4041, 0.5673], ..., [ 0.4323, -0.2901, 0.5100], [ 0.4419, -0.3081, 0.5235], [ 0.4596, -0.3278, 0.5353]], [[ 0.4701, -0.4338, 0.5783], [ 0.4548, -0.3844, 0.5665], [ 0.4445, -0.4182, 0.5731], ..., [ 0.4607, -0.3052, 0.5426], [ 0.4555, -0.3033, 0.5344], [ 0.4608, -0.3103, 0.5418]]]]), tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])]) 2 dict_keys(['skeleton', 'label']) tensor([[[[ 0.4939, -0.4103, 0.5915], [ 0.4737, -0.3553, 0.5707], [ 0.4599, -0.3896, 0.5775], ..., [ 0.4801, -0.2952, 0.5397], [ 0.4706, -0.3054, 0.5279], [ 0.4703, -0.3167, 0.5310]], [[ 0.4864, -0.3711, 0.5602], [ 0.4609, -0.3071, 0.5350], [ 0.4513, -0.3446, 0.5424], ..., [ 0.4731, -0.2591, 0.5014], [ 0.4591, -0.2642, 0.4880], [ 0.4564, -0.2782, 0.4883]], [[ 0.4212, -0.2986, 0.4492], [ 0.3987, -0.2458, 0.4205], [ 0.3858, -0.2760, 0.4282], ..., [ 0.4163, -0.2065, 0.3856], [ 0.3996, -0.2124, 0.3711], [ 0.3905, -0.2104, 0.3684]], ..., [[ 0.4576, -0.3808, 0.5104], [ 0.4329, -0.3245, 0.4925], [ 0.4201, -0.3548, 0.4903], ..., [ 0.4615, -0.2862, 0.4808], [ 0.4557, -0.3022, 0.4882], [ 0.4561, -0.3109, 0.4997]], [[ 0.4845, -0.4035, 0.5531], [ 0.4633, -0.3530, 0.5352], [ 0.4509, -0.3827, 0.5375], ..., [ 0.4786, -0.3131, 0.5140], [ 0.4782, -0.3320, 0.5252], [ 0.4785, -0.3434, 0.5350]], [[ 0.5020, -0.4166, 0.5738], [ 0.4699, -0.3629, 0.5480], [ 0.4667, -0.3985, 0.5586], ..., [ 0.4755, -0.3057, 0.5077], [ 0.4767, -0.3267, 0.5179], [ 0.4811, -0.3479, 0.5321]]], [[[ 0.4939, -0.4563, 0.5789], [ 0.4638, -0.3953, 0.5506], [ 0.4620, -0.4382, 0.5657], ..., [ 0.4632, -0.3589, 0.5063], [ 0.4661, -0.3812, 0.5163], [ 0.4745, -0.4018, 0.5311]], [[ 0.4456, -0.3599, 0.5136], [ 0.4279, -0.2952, 0.4838], [ 0.4181, -0.3321, 0.5008], ..., [ 0.4411, -0.2501, 0.4356], [ 0.4369, -0.2676, 0.4452], [ 0.4389, -0.2807, 0.4601]], [[ 0.3839, -0.2790, 0.4051], [ 0.3551, -0.2230, 0.3712], [ 0.3479, -0.2560, 0.3870], ..., [ 0.3680, -0.1768, 0.3253], [ 0.3622, -0.1935, 0.3308], [ 0.3616, -0.2029, 0.3452]], ..., [[ 0.4551, -0.3857, 0.5213], [ 0.4337, -0.3419, 0.5154], [ 0.4222, -0.3709, 0.5111], ..., [ 0.4649, -0.3003, 0.5134], [ 0.4720, -0.3259, 0.5276], [ 0.4770, -0.3510, 0.5386]], [[ 0.4612, -0.4040, 0.5458], [ 0.4535, -0.3696, 0.5527], [ 0.4339, -0.3905, 0.5403], ..., [ 0.5015, -0.3442, 0.5705], [ 0.5089, -0.3708, 0.5856], [ 0.5125, -0.3900, 0.5944]], [[ 0.5000, -0.4536, 0.5998], [ 0.4767, -0.4069, 0.5885], [ 0.4739, -0.4411, 0.5949], ..., [ 0.4923, -0.3621, 0.5645], [ 0.5081, -0.3883, 0.5798], [ 0.5182, -0.3990, 0.5934]]], [[[ 0.4553, -0.4093, 0.5347], [ 0.4465, -0.3465, 0.5095], [ 0.4286, -0.3852, 0.5241], ..., [ 0.4509, -0.3077, 0.4728], [ 0.4479, -0.3254, 0.4838], [ 0.4530, -0.3408, 0.4978]], [[ 0.4037, -0.3051, 0.4236], [ 0.3883, -0.2474, 0.4012], [ 0.3734, -0.2841, 0.4104], ..., [ 0.4092, -0.2127, 0.3748], [ 0.4185, -0.2356, 0.3855], [ 0.4252, -0.2515, 0.3991]], [[ 0.3537, -0.2618, 0.3555], [ 0.3258, -0.2090, 0.3282], [ 0.3217, -0.2452, 0.3408], ..., [ 0.3415, -0.1797, 0.2958], [ 0.3506, -0.2016, 0.3046], [ 0.3611, -0.2148, 0.3186]], ..., [[ 0.4537, -0.3549, 0.5033], [ 0.4227, -0.3063, 0.4904], [ 0.4194, -0.3419, 0.4946], ..., [ 0.4334, -0.2780, 0.4736], [ 0.4372, -0.3001, 0.4873], [ 0.4425, -0.3181, 0.4995]], [[ 0.4640, -0.3862, 0.5401], [ 0.4427, -0.3413, 0.5315], [ 0.4335, -0.3730, 0.5314], ..., [ 0.4738, -0.3113, 0.5228], [ 0.4929, -0.3358, 0.5369], [ 0.5051, -0.3468, 0.5482]], [[ 0.4655, -0.4041, 0.5552], [ 0.4422, -0.3530, 0.5404], [ 0.4380, -0.3914, 0.5487], ..., [ 0.4567, -0.3171, 0.5157], [ 0.4776, -0.3411, 0.5297], [ 0.4967, -0.3589, 0.5422]]], ..., [[[ 0.4761, -0.3570, 0.5141], [ 0.4648, -0.3141, 0.5161], [ 0.4576, -0.3426, 0.5166], ..., [ 0.5142, -0.2463, 0.5095], [ 0.5202, -0.2300, 0.5076], [ 0.5223, -0.2150, 0.5060]], [[ 0.3927, -0.2960, 0.4408], [ 0.3717, -0.2445, 0.4256], [ 0.3685, -0.2817, 0.4376], ..., [ 0.3918, -0.1666, 0.3913], [ 0.3900, -0.1506, 0.3827], [ 0.3875, -0.1388, 0.3751]], [[ 0.3311, -0.2876, 0.3770], [ 0.3134, -0.2340, 0.3532], [ 0.3020, -0.2676, 0.3640], ..., [ 0.3366, -0.1689, 0.3178], [ 0.3309, -0.1637, 0.3046], [ 0.3255, -0.1634, 0.2930]], ..., [[ 0.3970, -0.3313, 0.4459], [ 0.3739, -0.2776, 0.4274], [ 0.3668, -0.3141, 0.4362], ..., [ 0.3846, -0.2333, 0.3969], [ 0.3707, -0.2444, 0.3857], [ 0.3743, -0.2543, 0.3905]], [[ 0.4111, -0.3530, 0.4816], [ 0.3957, -0.3066, 0.4776], [ 0.3829, -0.3379, 0.4756], ..., [ 0.4256, -0.2702, 0.4716], [ 0.4197, -0.2851, 0.4655], [ 0.4262, -0.3008, 0.4746]], [[ 0.4676, -0.4057, 0.5600], [ 0.4560, -0.3730, 0.5605], [ 0.4467, -0.3971, 0.5617], ..., [ 0.4902, -0.2986, 0.5512], [ 0.4911, -0.2836, 0.5483], [ 0.5034, -0.2781, 0.5599]]], [[[ 0.4721, -0.4069, 0.5961], [ 0.4707, -0.3673, 0.6005], [ 0.4602, -0.3962, 0.6026], ..., [ 0.4986, -0.2846, 0.5858], [ 0.5057, -0.2652, 0.5839], [ 0.5095, -0.2495, 0.5822]], [[ 0.4048, -0.3119, 0.4769], [ 0.3951, -0.2639, 0.4670], [ 0.3832, -0.2988, 0.4758], ..., [ 0.4350, -0.1855, 0.4479], [ 0.4395, -0.1692, 0.4425], [ 0.4435, -0.1551, 0.4377]], [[ 0.3602, -0.2710, 0.3874], [ 0.3429, -0.2231, 0.3582], [ 0.3350, -0.2542, 0.3804], ..., [ 0.3495, -0.1652, 0.3141], [ 0.3383, -0.1565, 0.3000], [ 0.3286, -0.1488, 0.2876]], ..., [[ 0.4653, -0.3848, 0.5433], [ 0.4530, -0.3342, 0.5315], [ 0.4418, -0.3660, 0.5397], ..., [ 0.4616, -0.3031, 0.5096], [ 0.4674, -0.3284, 0.5250], [ 0.4782, -0.3437, 0.5373]], [[ 0.4766, -0.4024, 0.5700], [ 0.4672, -0.3583, 0.5674], [ 0.4549, -0.3893, 0.5701], ..., [ 0.4827, -0.3129, 0.5544], [ 0.4868, -0.3336, 0.5710], [ 0.4939, -0.3441, 0.5810]], [[ 0.4893, -0.4281, 0.5998], [ 0.4710, -0.3846, 0.5879], [ 0.4665, -0.4158, 0.5996], ..., [ 0.4830, -0.3421, 0.5596], [ 0.4835, -0.3640, 0.5749], [ 0.4894, -0.3746, 0.5868]]], [[[ 0.4661, -0.4360, 0.6053], [ 0.4644, -0.3942, 0.6059], [ 0.4469, -0.4223, 0.6035], ..., [ 0.5182, -0.3283, 0.6059], [ 0.5178, -0.3333, 0.6037], [ 0.5292, -0.3455, 0.6152]], [[ 0.4357, -0.3562, 0.5250], [ 0.4243, -0.3055, 0.5140], [ 0.4129, -0.3416, 0.5214], ..., [ 0.4613, -0.2225, 0.4948], [ 0.4654, -0.2058, 0.4900], [ 0.4691, -0.1910, 0.4858]], [[ 0.3920, -0.3078, 0.4274], [ 0.3592, -0.2533, 0.4066], [ 0.3542, -0.2891, 0.4083], ..., [ 0.3804, -0.2067, 0.3905], [ 0.3754, -0.2042, 0.3783], [ 0.3706, -0.2030, 0.3676]], ..., [[ 0.4513, -0.4002, 0.5616], [ 0.4358, -0.3517, 0.5431], [ 0.4258, -0.3837, 0.5538], ..., [ 0.4320, -0.3158, 0.5094], [ 0.4378, -0.3351, 0.5229], [ 0.4490, -0.3474, 0.5371]], [[ 0.4701, -0.4148, 0.5681], [ 0.4479, -0.3735, 0.5515], [ 0.4469, -0.4041, 0.5673], ..., [ 0.4323, -0.2901, 0.5100], [ 0.4419, -0.3081, 0.5235], [ 0.4596, -0.3278, 0.5353]], [[ 0.4701, -0.4338, 0.5783], [ 0.4548, -0.3844, 0.5665], [ 0.4445, -0.4182, 0.5731], ..., [ 0.4607, -0.3052, 0.5426], [ 0.4555, -0.3033, 0.5344], [ 0.4608, -0.3103, 0.5418]]]]) skeleton label Tensor_dataT.size() = torch.Size([32, 8, 22, 3]) Tensor_dataT [[[ 0.45649411 -0.44376922 0.64408398] [ 0.45470198 -0.38724606 0.63845301] [ 0.43893905 -0.42612109 0.64874703] [ 0.41352988 -0.38762114 0.65398598] [ 0.38978973 -0.35307541 0.65376902] [ 0.38361855 -0.32759178 0.65515703] [ 0.4284792 -0.32936773 0.63953203] [ 0.42679544 -0.27440213 0.63265598] [ 0.42789929 -0.24478968 0.62921703] [ 0.42692376 -0.22101636 0.62609202] [ 0.45129005 -0.32722124 0.63175601] [ 0.44714241 -0.26338693 0.619479 ] [ 0.50353895 -0.34977931 0.62299418] [ 0.3156789 -0.27295206 0.60414994] [ 0.47331994 -0.33073168 0.62587798] [ 0.47041377 -0.27057905 0.61708701] [ 0.42616162 -0.25311683 0.71024507] [ 0.46730407 -0.21198767 0.60850102] [ 0.49502148 -0.34408698 0.619892 ] [ 0.49964735 -0.29375331 0.61635399] [ 0.50096575 -0.2707146 0.61472797] [ 0.45703796 -0.25597774 0.53799719]] [[ 0.47197036 -0.53988416 0.62220198] [ 0.4580784 -0.48336113 0.60461497] [ 0.44658563 -0.52154911 0.619412 ] [ 0.41508607 -0.48072571 0.61257303] [ 0.38082476 -0.44323452 0.589674 ] [ 0.36590875 -0.41295902 0.57904899] [ 0.41487425 -0.41403426 0.58618098] [ 0.4140427 -0.3613101 0.57492298] [ 0.41350103 -0.33505483 0.56929302] [ 0.4128616 -0.3113708 0.56417602] [ 0.44144987 -0.41669524 0.58362198] [ 0.43370049 -0.3579911 0.57625699] [ 0.49153033 -0.44347535 0.58263618] [ 0.30505913 -0.3713189 0.56583893] [ 0.46648639 -0.42415859 0.58316201] [ 0.45920816 -0.35960788 0.55863303] [ 0.41443498 -0.33983203 0.64373803] [ 0.44764333 -0.31478569 0.53467399] [ 0.49675979 -0.44231811 0.58563203] [ 0.48508369 -0.37770261 0.560574 ] [ 0.47726461 -0.3720665 0.549061 ] [ 0.41848824 -0.3831209 0.46360517]] [[ 0.48442138 -0.62001068 0.627913 ] [ 0.49168067 -0.57390347 0.60613197] [ 0.46249449 -0.58999824 0.617248 ] [ 0.46103121 -0.54664181 0.59524101] [ 0.47081903 -0.50676016 0.58063197] [ 0.47703809 -0.47600041 0.568829 ] [ 0.46432632 -0.4830178 0.574269 ] [ 0.45322754 -0.45161847 0.54255003] [ 0.44803504 -0.43584942 0.52669102] [ 0.46494869 -0.43861626 0.532435 ] [ 0.49320529 -0.50320813 0.58013397] [ 0.4726163 -0.49277866 0.54636502] [ 0.49780852 -0.61624818 0.53734219] [ 0.31374727 -0.59338886 0.52973294] [ 0.51733116 -0.52547568 0.58699799] [ 0.49490084 -0.51341313 0.55295902] [ 0.42256253 -0.5291977 0.63319808] [ 0.45177362 -0.54055221 0.54193801] [ 0.54645841 -0.56252827 0.598836 ] [ 0.51718837 -0.54657465 0.56708002] [ 0.50381804 -0.53947116 0.55249 ] [ 0.45658055 -0.56645892 0.4813922 ]] [[ 0.42587508 -0.67696014 0.56173801] [ 0.46481211 -0.66463394 0.56095499] [ 0.42960141 -0.64680746 0.55488998] [ 0.45645956 -0.617573 0.54098803] [ 0.48047119 -0.60097324 0.52756703] [ 0.49974634 -0.59675506 0.51798499] [ 0.49845378 -0.61679659 0.55171102] [ 0.51597109 -0.64597169 0.54589701] [ 0.5046869 -0.66281403 0.54299003] [ 0.5010224 -0.68822165 0.55855399] [ 0.5076827 -0.64872309 0.56002003] [ 0.52990845 -0.67580205 0.55221999] [ 0.58918724 -0.83106116 0.5905692 ] [ 0.40330692 -0.7874534 0.58834797] [ 0.5126011 -0.67765428 0.56693202] [ 0.52397628 -0.69367545 0.55389702] [ 0.4822849 -0.73224239 0.67502707] [ 0.51807494 -0.72636618 0.59556901] [ 0.51159101 -0.71302973 0.57522798] [ 0.51961776 -0.71390895 0.562195 ] [ 0.52242911 -0.72957377 0.580863 ] [ 0.4730504 -0.7378266 0.51739216]] [[ 0.28875737 -0.70936456 0.60423601] [ 0.31463972 -0.6756929 0.588386 ] [ 0.28418101 -0.67239651 0.58934498] [ 0.30820475 -0.66839428 0.57322299] [ 0.32074619 -0.62880076 0.561692 ] [ 0.34317953 -0.6224781 0.55596298] [ 0.33162814 -0.60459652 0.556265 ] [ 0.3104165 -0.60353749 0.52642602] [ 0.28594978 -0.60147305 0.51150697] [ 0.27226425 -0.61648274 0.51690602] [ 0.34866905 -0.63791372 0.56946599] [ 0.33020677 -0.64519455 0.54184502] [ 0.38262178 -0.79788928 0.57402021] [ 0.4739, -0.4411, 0.5949],.bias | 32 | WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). :8: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). Tensor_dataT = torch.tensor(dataT['skeleton']); :9: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). Tensor_labelsT = torch.tensor(dataT['label']); WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). [ 0.4739, -0.4411, 0.5949],.bias | 32 | :8: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). Tensor_dataT = torch.tensor(dataT['skeleton']); :9: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). Tensor_labelsT = torch.tensor(dataT['label']); WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). [ 0.4739, -0.4411, 0.5949],.bias | 32 | [ 0.4739, -0.4411, 0.5949],.bias | 32 | [ 0.4739, -0.4411, 0.5949],.bias | 32 |