CISCai commited on
Commit
57c5b22
1 Parent(s): a504cfc

Upload 5 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Qwen2.5-Coder-0.5B-Instruct-bf16-00001-of-00002.gguf filter=lfs diff=lfs merge=lfs -text
37
+ Qwen2.5-Coder-0.5B-Instruct-bf16-00002-of-00002.gguf filter=lfs diff=lfs merge=lfs -text
38
+ Qwen2.5-Coder-0.5B-Instruct.IQ4_NL.gguf filter=lfs diff=lfs merge=lfs -text
Qwen2.5-Coder-0.5B-Instruct-bf16-00001-of-00002.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:daca627e84745a6b273ee0946559e371bda6d9496e03a19ed1da93df7a845206
3
+ size 5931872
Qwen2.5-Coder-0.5B-Instruct-bf16-00002-of-00002.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:617bd1d5c9b6f1c43d2b3239fb82de50fe6abd51ed632e05704b204b81866d3e
3
+ size 988225248
Qwen2.5-Coder-0.5B-Instruct.IQ4_NL.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b27a86883300bb7b7358dff9550636dc7f6351e640aa0adee33106e01c83c05
3
+ size 353531520
Qwen2.5-Coder-0.5B-Instruct.imatrix.dat ADDED
Binary file (989 kB). View file
 
README.md CHANGED
@@ -1,3 +1,417 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B-Instruct/blob/main/LICENSE
4
+ language:
5
+ - en
6
+ base_model:
7
+ - Qwen/Qwen2.5-Coder-0.5B
8
+ pipeline_tag: text-generation
9
+ tags:
10
+ - code
11
+ - codeqwen
12
+ - chat
13
+ - qwen
14
+ - qwen-coder
15
+ model_creator: Qwen
16
+ model_name: Qwen2.5-Coder-0.5B-Instruct
17
+ model_type: qwen2
18
+ datasets:
19
+ - m-a-p/CodeFeedback-Filtered-Instruction
20
+ quantized_by: CISC
21
+ ---
22
+
23
+ # Qwen2.5-Coder-0.5B-Instruct - SOTA GGUF
24
+ - Model creator: [Qwen](https://huggingface.co/Qwen)
25
+ - Original model: [Qwen2.5-Coder-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B-Instruct)
26
+
27
+ <!-- description start -->
28
+ ## Description
29
+
30
+ This repo contains State Of The Art quantized GGUF format model files for [Qwen2.5-Coder-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B-Instruct).
31
+
32
+ Quantization was done with an importance matrix that was trained for ~1M tokens (256 batches of 4096 tokens) of answers from the [CodeFeedback-Filtered-Instruction](https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction) dataset.
33
+
34
+ Fill-in-Middle tokens are automatically detected and supported as of commit [11ac980](https://github.com/ggerganov/llama.cpp/commit/11ac9800aff532715a5bc7991062c68ba3472e6e), see [example](#simple-llama-cpp-python-example-fill-in-middle-code).
35
+
36
+ <!-- description end -->
37
+
38
+
39
+ <!-- prompt-template start -->
40
+ ## Prompt template: ChatML
41
+
42
+ ```
43
+ <|im_start|>system
44
+ {system_prompt}<|im_end|>
45
+ <|im_start|>user
46
+ {prompt}<|im_end|>
47
+ <|im_start|>assistant
48
+ ```
49
+
50
+ <!-- prompt-template end -->
51
+
52
+
53
+ <!-- compatibility_gguf start -->
54
+ ## Compatibility
55
+
56
+ These quantised GGUFv3 files are compatible with llama.cpp from February 27th 2024 onwards, as of commit [0becb22](https://github.com/ggerganov/llama.cpp/commit/0becb22ac05b6542bd9d5f2235691aa1d3d4d307)
57
+
58
+ They are also compatible with many third party UIs and libraries provided they are built using a recent llama.cpp.
59
+
60
+ ## Explanation of quantisation methods
61
+
62
+ <details>
63
+ <summary>Click to see details</summary>
64
+
65
+ The new methods available are:
66
+
67
+ * GGML_TYPE_IQ1_S - 1-bit quantization in super-blocks with an importance matrix applied, effectively using 1.56 bits per weight (bpw)
68
+ * GGML_TYPE_IQ1_M - 1-bit quantization in super-blocks with an importance matrix applied, effectively using 1.75 bpw
69
+ * GGML_TYPE_IQ2_XXS - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.06 bpw
70
+ * GGML_TYPE_IQ2_XS - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.31 bpw
71
+ * GGML_TYPE_IQ2_S - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.5 bpw
72
+ * GGML_TYPE_IQ2_M - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.7 bpw
73
+ * GGML_TYPE_IQ3_XXS - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.06 bpw
74
+ * GGML_TYPE_IQ3_XS - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.3 bpw
75
+ * GGML_TYPE_IQ3_S - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.44 bpw
76
+ * GGML_TYPE_IQ3_M - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.66 bpw
77
+ * GGML_TYPE_IQ4_XS - 4-bit quantization in super-blocks with an importance matrix applied, effectively using 4.25 bpw
78
+ * GGML_TYPE_IQ4_NL - 4-bit non-linearly mapped quantization with an importance matrix applied, effectively using 4.5 bpw
79
+
80
+ Refer to the Provided Files table below to see what files use which methods, and how.
81
+ </details>
82
+ <!-- compatibility_gguf end -->
83
+
84
+ <!-- README_GGUF.md-provided-files start -->
85
+ ## Provided files
86
+
87
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
88
+ | ---- | ---- | ---- | ---- | ---- | ----- |
89
+ | [Qwen2.5-Coder-0.5B-Instruct.IQ4_NL.gguf](https://huggingface.co/CISCai/Qwen2.5-Coder-0.5B-Instruct-SOTA-GGUF/blob/main/Qwen2.5-Coder-0.5B-Instruct.IQ4_NL.gguf) | IQ4_NL | 4 | 0.3 GB| 0.7 GB | medium, balanced quality - recommended |
90
+
91
+ Generated importance matrix file: [Qwen2.5-Coder-0.5B-Instruct.imatrix.dat](https://huggingface.co/CISCai/Qwen2.5-Coder-0.5B-Instruct-SOTA-GGUF/blob/main/Qwen2.5-Coder-0.5B-Instruct.imatrix.dat)
92
+
93
+ **Note**: the above RAM figures assume no GPU offloading with 4K context. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
94
+
95
+ <!-- README_GGUF.md-provided-files end -->
96
+
97
+ <!-- README_GGUF.md-how-to-run start -->
98
+ ## Example `llama.cpp` command
99
+
100
+ Make sure you are using `llama.cpp` from commit [0becb22](https://github.com/ggerganov/llama.cpp/commit/0becb22ac05b6542bd9d5f2235691aa1d3d4d307) or later.
101
+
102
+ ```shell
103
+ ./llama-cli -ngl 25 -m Qwen2.5-Coder-0.5B-Instruct.IQ4_XS.gguf --color -c 32768 --temp 0.7 --top-p 0.8 --top-k 20 --repeat-penalty 1.05 -p "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
104
+ ```
105
+
106
+ Change `-ngl 25` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
107
+
108
+ Change `-c 32768` to the desired sequence length.
109
+
110
+ If you are low on V/RAM try quantizing the K-cache with `-ctk q8_0` or even `-ctk q4_0` for big memory savings (depending on context size).
111
+ There is a similar option for V-cache (`-ctv`), only available if you enable Flash Attention (`-fa`) as well.
112
+
113
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
114
+
115
+ ## How to run from Python code
116
+
117
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) module.
118
+
119
+ ### How to load this model in Python code, using llama-cpp-python
120
+
121
+ For full documentation, please see: [llama-cpp-python docs](https://llama-cpp-python.readthedocs.io/en/latest/).
122
+
123
+ #### First install the package
124
+
125
+ Run one of the following commands, according to your system:
126
+
127
+ ```shell
128
+ # Prebuilt wheel with basic CPU support
129
+ pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu
130
+ # Prebuilt wheel with NVidia CUDA acceleration
131
+ pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu121 (or cu122 etc.)
132
+ # Prebuilt wheel with Metal GPU acceleration
133
+ pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/metal
134
+ # Build base version with no GPU acceleration
135
+ pip install llama-cpp-python
136
+ # With NVidia CUDA acceleration
137
+ CMAKE_ARGS="-DGGML_CUDA=on" pip install llama-cpp-python
138
+ # Or with OpenBLAS acceleration
139
+ CMAKE_ARGS="-DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
140
+ # Or with AMD ROCm GPU acceleration (Linux only)
141
+ CMAKE_ARGS="-DGGML_HIPBLAS=on" pip install llama-cpp-python
142
+ # Or with Metal GPU acceleration for macOS systems only
143
+ CMAKE_ARGS="-DGGML_METAL=on" pip install llama-cpp-python
144
+ # Or with Vulkan acceleration
145
+ CMAKE_ARGS="-DGGML_VULKAN=on" pip install llama-cpp-python
146
+ # Or with SYCL acceleration
147
+ CMAKE_ARGS="-DGGML_SYCL=on -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx" pip install llama-cpp-python
148
+
149
+ # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
150
+ $env:CMAKE_ARGS = "-DGGML_CUDA=on"
151
+ pip install llama-cpp-python
152
+ ```
153
+
154
+ #### Simple llama-cpp-python example code
155
+
156
+ ```python
157
+ from llama_cpp import Llama
158
+
159
+ # Chat Completion API
160
+
161
+ llm = Llama(model_path="./Qwen2.5-Coder-0.5B-Instruct.IQ4_NL.gguf", n_gpu_layers=25, n_ctx=32768)
162
+ print(llm.create_chat_completion(
163
+ repeat_penalty = 1.05,
164
+ messages = [
165
+ {
166
+ "role": "user",
167
+ "content": "Pick a LeetCode challenge and solve it in Python."
168
+ }
169
+ ]
170
+ ))
171
+ ```
172
+
173
+ #### Simple llama-cpp-python example fill-in-middle code
174
+
175
+ ```python
176
+ from llama_cpp import Llama
177
+
178
+ # Completion API
179
+
180
+ prompt = "def add("
181
+ suffix = "\n return sum\n\n"
182
+
183
+ llm = Llama(model_path="./Qwen2.5-Coder-0.5B-Instruct.IQ4_NL.gguf", n_gpu_layers=25, n_ctx=32768)
184
+ output = llm.create_completion(
185
+ temperature = 0.0,
186
+ repeat_penalty = 1.0,
187
+ prompt = prompt,
188
+ suffix = suffix
189
+ )
190
+
191
+ # Models sometimes repeat suffix in response, attempt to filter that
192
+ response = output["choices"][0]["text"]
193
+ response_stripped = response.rstrip()
194
+ unwanted_response_suffix = suffix.rstrip()
195
+ unwanted_response_length = len(unwanted_response_suffix)
196
+
197
+ filtered = False
198
+ if unwanted_response_suffix and response_stripped[-unwanted_response_length:] == unwanted_response_suffix:
199
+ response = response_stripped[:-unwanted_response_length]
200
+ filtered = True
201
+
202
+ print(f"Fill-in-Middle completion{' (filtered)' if filtered else ''}:\n\n{prompt}\033[32m{response}\033[{'33' if filtered else '0'}m{suffix}\033[0m")
203
+ ```
204
+
205
+ #### Simple llama-cpp-python example function calling code
206
+
207
+ ```python
208
+ from llama_cpp import Llama
209
+
210
+ # Chat Completion API
211
+
212
+ grammar = LlamaGrammar.from_json_schema(json.dumps({
213
+ "type": "array",
214
+ "items": {
215
+ "type": "object",
216
+ "required": [ "name", "arguments" ],
217
+ "properties": {
218
+ "name": {
219
+ "type": "string"
220
+ },
221
+ "arguments": {
222
+ "type": "object"
223
+ }
224
+ }
225
+ }
226
+ }))
227
+
228
+ llm = Llama(model_path="./Qwen2.5-Coder-0.5B-Instruct.IQ4_NL.gguf", n_gpu_layers=25, n_ctx=32768)
229
+ response = llm.create_chat_completion(
230
+ temperature = 0.0,
231
+ repeat_penalty = 1.05,
232
+ messages = [
233
+ {
234
+ "role": "user",
235
+ "content": "What's the weather like in Oslo and Stockholm?"
236
+ }
237
+ ],
238
+ tools=[{
239
+ "type": "function",
240
+ "function": {
241
+ "name": "get_current_weather",
242
+ "description": "Get the current weather in a given location",
243
+ "parameters": {
244
+ "type": "object",
245
+ "properties": {
246
+ "location": {
247
+ "type": "string",
248
+ "description": "The city and state, e.g. San Francisco, CA"
249
+ },
250
+ "unit": {
251
+ "type": "string",
252
+ "enum": [ "celsius", "fahrenheit" ]
253
+ }
254
+ },
255
+ "required": [ "location" ]
256
+ }
257
+ }
258
+ }],
259
+ grammar = grammar
260
+ )
261
+ print(json.loads(response["choices"][0]["text"]))
262
+
263
+ print(llm.create_chat_completion(
264
+ temperature = 0.0,
265
+ repeat_penalty = 1.05,
266
+ messages = [
267
+ {
268
+ "role": "user",
269
+ "content": "What's the weather like in Oslo?"
270
+ },
271
+ { # The tool_calls is from the response to the above with tool_choice active
272
+ "role": "assistant",
273
+ "content": None,
274
+ "tool_calls": [
275
+ {
276
+ "id": "call__0_get_current_weather_cmpl-...",
277
+ "type": "function",
278
+ "function": {
279
+ "name": "get_current_weather",
280
+ "arguments": { "location": "Oslo, Norway" , "unit": "celsius" }
281
+ }
282
+ }
283
+ ]
284
+ },
285
+ { # The tool_call_id is from tool_calls and content is the result from the function call you made
286
+ "role": "tool",
287
+ "content": "20",
288
+ "tool_call_id": "call__0_get_current_weather_cmpl-..."
289
+ }
290
+ ],
291
+ tools=[{
292
+ "type": "function",
293
+ "function": {
294
+ "name": "get_current_weather",
295
+ "description": "Get the current weather in a given location",
296
+ "parameters": {
297
+ "type": "object",
298
+ "properties": {
299
+ "location": {
300
+ "type": "string",
301
+ "description": "The city and state, e.g. San Francisco, CA"
302
+ },
303
+ "unit": {
304
+ "type": "string",
305
+ "enum": [ "celsius", "fahrenheit" ]
306
+ }
307
+ },
308
+ "required": [ "location" ]
309
+ }
310
+ }
311
+ }],
312
+ #tool_choice={
313
+ # "type": "function",
314
+ # "function": {
315
+ # "name": "get_current_weather"
316
+ # }
317
+ #}
318
+ ))
319
+ ```
320
+
321
+ <!-- README_GGUF.md-how-to-run end -->
322
+
323
+ <!-- original-model-card start -->
324
+ # Qwen2.5-Coder-0.5B-Instruct
325
+
326
+ ## Introduction
327
+
328
+ Qwen2.5-Coder is the latest series of Code-Specific Qwen large language models (formerly known as CodeQwen). As of now, Qwen2.5-Coder has covered six mainstream model sizes, 0.5, 1.5, 3, 7, 14, 32 billion parameters, to meet the needs of different developers. Qwen2.5-Coder brings the following improvements upon CodeQwen1.5:
329
+
330
+ - Significantly improvements in **code generation**, **code reasoning** and **code fixing**. Base on the strong Qwen2.5, we scale up the training tokens into 5.5 trillion including source code, text-code grounding, Synthetic data, etc. Qwen2.5-Coder-32B has become the current state-of-the-art open-source codeLLM, with its coding abilities matching those of GPT-4o.
331
+ - A more comprehensive foundation for real-world applications such as **Code Agents**. Not only enhancing coding capabilities but also maintaining its strengths in mathematics and general competencies.
332
+
333
+ **This repo contains the instruction-tuned 0.5B Qwen2.5-Coder model**, which has the following features:
334
+ - Type: Causal Language Models
335
+ - Training Stage: Pretraining & Post-training
336
+ - Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings
337
+ - Number of Parameters: 0.49B
338
+ - Number of Paramaters (Non-Embedding): 0.36B
339
+ - Number of Layers: 24
340
+ - Number of Attention Heads (GQA): 14 for Q and 2 for KV
341
+ - Context Length: Full 32,768 tokens
342
+
343
+ For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5-coder-family/), [GitHub](https://github.com/QwenLM/Qwen2.5-Coder), [Documentation](https://qwen.readthedocs.io/en/latest/), [Arxiv](https://arxiv.org/abs/2409.12186).
344
+
345
+ ## Requirements
346
+
347
+ The code of Qwen2.5-Coder has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
348
+
349
+ With `transformers<4.37.0`, you will encounter the following error:
350
+ ```
351
+ KeyError: 'qwen2'
352
+ ```
353
+
354
+ ## Quickstart
355
+
356
+ Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
357
+
358
+ ```python
359
+ from transformers import AutoModelForCausalLM, AutoTokenizer
360
+
361
+ model_name = "Qwen/Qwen2.5-Coder-0.5B-Instruct"
362
+
363
+ model = AutoModelForCausalLM.from_pretrained(
364
+ model_name,
365
+ torch_dtype="auto",
366
+ device_map="auto"
367
+ )
368
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
369
+
370
+ prompt = "write a quick sort algorithm."
371
+ messages = [
372
+ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
373
+ {"role": "user", "content": prompt}
374
+ ]
375
+ text = tokenizer.apply_chat_template(
376
+ messages,
377
+ tokenize=False,
378
+ add_generation_prompt=True
379
+ )
380
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
381
+
382
+ generated_ids = model.generate(
383
+ **model_inputs,
384
+ max_new_tokens=512
385
+ )
386
+ generated_ids = [
387
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
388
+ ]
389
+
390
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
391
+ ```
392
+
393
+
394
+ ## Evaluation & Performance
395
+
396
+ Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5-coder-family/).
397
+
398
+ For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
399
+
400
+ ## Citation
401
+
402
+ If you find our work helpful, feel free to give us a cite.
403
+
404
+ ```
405
+ @article{hui2024qwen2,
406
+ title={Qwen2. 5-Coder Technical Report},
407
+ author={Hui, Binyuan and Yang, Jian and Cui, Zeyu and Yang, Jiaxi and Liu, Dayiheng and Zhang, Lei and Liu, Tianyu and Zhang, Jiajun and Yu, Bowen and Dang, Kai and others},
408
+ journal={arXiv preprint arXiv:2409.12186},
409
+ year={2024}
410
+ }
411
+ @article{qwen2,
412
+ title={Qwen2 Technical Report},
413
+ author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
414
+ journal={arXiv preprint arXiv:2407.10671},
415
+ year={2024}
416
+ }
417
+ ```