ppo-LunarLander-v2 / config.json
CWhy's picture
init test
ecc9fd8
raw
history blame
14.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0a0a81b3a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0a0a81b430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0a0a81b4c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0a0a81b550>", "_build": "<function ActorCriticPolicy._build at 0x7f0a0a81b5e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0a0a81b670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0a0a81b700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0a0a81b790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0a0a81b820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0a0a81b8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0a0a81b940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0a0a80ff60>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVYgAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZRLQGGMAnZmlF2US0BhdWF1Lg==", "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>", "net_arch": [{"pi": [64], "vf": [64]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651684751.4650345, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGu2sL7Tfqc+cAVnPnrpxr727IC+UAExPgAAAAAAAAAAzS4fvXEXUz8S1VW9nEsbv8g5Fb26FW+9AAAAAAAAAACav3e98ty6P1Oz4r6r8wA8NkUiPXlBLL0AAAAAAAAAAPM3tL3gx+c+l2fIPfxStb7Sbq+9o+gIPQAAAAAAAAAAAC6svVwTMrpEY8G67JZdttfbtDu9iOA5AAAAAAAAgD9axc499vcYP8qs+b3mHgS/lHyDPQy6tb0AAAAAAAAAAFoLVD5mDK8+gYeIvr045L7rtZY9JaljvgAAAAAAAAAAjfwEviyiqT7lVhs+9vq5vo6sP736VIk8AAAAAAAAAADi+IC+z5ZtPiemhD6qFIu+le0YviBI5T0AAAAAAAAAAIYWCT7G44Y+x3C3vqGK175c/f29VuxjvQAAAAAAAAAADa3tvUQUPz+ts+G9THIrvzJ5Eb4nZbI8AAAAAAAAAABNgb09pN+SP2qQ2D7CKQ6/Qr8vPuqhpT4AAAAAAAAAADNAdz325Ei6Rt2evV6DKj3fxiS6P/8QvgAAgD8AAIA/5rkPPXuiuLoQUgY0iZE/L30l7TjEnaWzAACAPwAAgD+z1AW+Gz+FP5IK9b6UPE+/rT80vhcBAb4AAAAAAAAAAOZImr2PAm64XeT7Nr6r9zFRYc+6FcoStgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzH7d6U6cc0CUhpRSlIwBbJRL0owBdJRHQLBKa4HX2/V1fZQoaAZoCWgPQwgTQ3IycRFvQJSGlFKUaBVLzGgWR0CwSoRVU+9rdX2UKGgGaAloD0MIfLjkuFM/U0CUhpRSlGgVS5JoFkdAsEqQAFPi1nV9lChoBmgJaA9DCEsGgCoum3BAlIaUUpRoFUvEaBZHQLBKmpc5bQl1fZQoaAZoCWgPQwhNui2RC/lvQJSGlFKUaBVLxGgWR0CwSq+qioKldX2UKGgGaAloD0MIkuo7vygIc0CUhpRSlGgVS9hoFkdAsEq+FDfFaXV9lChoBmgJaA9DCBDLZg5Js3FAlIaUUpRoFUvVaBZHQLBKw6wMYuV1fZQoaAZoCWgPQwiJKZFEL+9wQJSGlFKUaBVLzGgWR0CwSsxWxQizdX2UKGgGaAloD0MIt7OvPEilcUCUhpRSlGgVS+NoFkdAsEriA7Ppp3V9lChoBmgJaA9DCDYhrTEojHJAlIaUUpRoFUu7aBZHQLBK9rUb1h91fZQoaAZoCWgPQwgkKH6MuTZzQJSGlFKUaBVL6WgWR0CwSwA0TDfndX2UKGgGaAloD0MIopbmVkjLckCUhpRSlGgVS/9oFkdAsEsRnDiwS3V9lChoBmgJaA9DCIi7ehUZ805AlIaUUpRoFUuHaBZHQLBLGdCE6DJ1fZQoaAZoCWgPQwh5dY4BGddyQJSGlFKUaBVNBAFoFkdAsEsd/d69kHV9lChoBmgJaA9DCGiyf54GFnRAlIaUUpRoFUv5aBZHQLBLR2rn1Wd1fZQoaAZoCWgPQwi9i/fj9iRwQJSGlFKUaBVL3GgWR0CwS0qP0Zm7dX2UKGgGaAloD0MIcefCSO/9cECUhpRSlGgVS/hoFkdAsEtjjZL7GnV9lChoBmgJaA9DCG4164zvKXJAlIaUUpRoFUv6aBZHQLBLht0FKTV1fZQoaAZoCWgPQwik42pkV8RIQJSGlFKUaBVLp2gWR0CwS5F6JIlMdX2UKGgGaAloD0MIXaPlQI8wc0CUhpRSlGgVS+ZoFkdAsEul8v24/nV9lChoBmgJaA9DCMX/HVEhRHBAlIaUUpRoFUvQaBZHQLBLur0aqCJ1fZQoaAZoCWgPQwieeM4W0MtzQJSGlFKUaBVNAQFoFkdAsEu8VM23rnV9lChoBmgJaA9DCG7BUl0AtnFAlIaUUpRoFUu6aBZHQLBL2C7btZ51fZQoaAZoCWgPQwiXUpeMI5dyQJSGlFKUaBVL+WgWR0CwS+elXRw7dX2UKGgGaAloD0MIyk+qfbqmcUCUhpRSlGgVS8JoFkdAsEvskxASnXV9lChoBmgJaA9DCMf0hCXeg3FAlIaUUpRoFU0QAWgWR0CwS/OGO+7EdX2UKGgGaAloD0MIIJbNHBJpbkCUhpRSlGgVS+1oFkdAsEv+zyBkJHV9lChoBmgJaA9DCLa93ZLc3nFAlIaUUpRoFUvRaBZHQLBP2Wd3B551fZQoaAZoCWgPQwi+v0F79e9MQJSGlFKUaBVLdmgWR0CwT+LNnoPkdX2UKGgGaAloD0MIzLc+rHe3ckCUhpRSlGgVS+toFkdAsE/yBSUC73V9lChoBmgJaA9DCJKvBFLi+XJAlIaUUpRoFUvlaBZHQLBP98gIQe51fZQoaAZoCWgPQwiR8L2/gXJxQJSGlFKUaBVLz2gWR0CwUAQbEP1+dX2UKGgGaAloD0MI1PAtrBtlcUCUhpRSlGgVS9RoFkdAsFALtkWhy3V9lChoBmgJaA9DCBR6/Um86HNAlIaUUpRoFUvHaBZHQLBQNGwzLwF1fZQoaAZoCWgPQwi8lpAPuoVxQJSGlFKUaBVL8GgWR0CwUEDRQaaTdX2UKGgGaAloD0MIS3MrhBWMc0CUhpRSlGgVS9doFkdAsFBlLTQVsXV9lChoBmgJaA9DCLgHISAfUHNAlIaUUpRoFUvuaBZHQLBQmPvKEFp1fZQoaAZoCWgPQwiNKO0Nvr9tQJSGlFKUaBVL2WgWR0CwUJ1twaR7dX2UKGgGaAloD0MIbt3NU13ycUCUhpRSlGgVS8poFkdAsFCfAbhm5HV9lChoBmgJaA9DCAPso1MXdnFAlIaUUpRoFUvZaBZHQLBQrmYBvJl1fZQoaAZoCWgPQwgI6L6cWalyQJSGlFKUaBVL32gWR0CwUMNwJgLJdX2UKGgGaAloD0MIL6cExCTebUCUhpRSlGgVS91oFkdAsFDOKKpDNXV9lChoBmgJaA9DCG06ArjZPnJAlIaUUpRoFUvTaBZHQLBQ2mHgxah1fZQoaAZoCWgPQwgBv0aSoAlvQJSGlFKUaBVL2GgWR0CwUPZ3s5XEdX2UKGgGaAloD0MI8ghupOw0c0CUhpRSlGgVS+RoFkdAsFD3rC3w1HV9lChoBmgJaA9DCEj43t8ggm9AlIaUUpRoFUvYaBZHQLBREC2MKkV1fZQoaAZoCWgPQwio/dZOFKlvQJSGlFKUaBVL+WgWR0CwUSeAEt/XdX2UKGgGaAloD0MIqvHSTSKvc0CUhpRSlGgVS+9oFkdAsFEozvZyuXV9lChoBmgJaA9DCHUGRl5WgG5AlIaUUpRoFUvaaBZHQLBRTAWBSUF1fZQoaAZoCWgPQwhYG2MnPI1xQJSGlFKUaBVL0GgWR0CwUU2kN4JNdX2UKGgGaAloD0MI9BWkGYv8c0CUhpRSlGgVS9VoFkdAsFGCXw9aEHV9lChoBmgJaA9DCMECmDJw5EBAlIaUUpRoFUuQaBZHQLBRkJK8L8d1fZQoaAZoCWgPQwi5cvbO6FdwQJSGlFKUaBVLtmgWR0CwUZI9gWrPdX2UKGgGaAloD0MIw7ewbry0b0CUhpRSlGgVS71oFkdAsFGXXf642HV9lChoBmgJaA9DCLrzxHN2jnJAlIaUUpRoFUvaaBZHQLBRwirDIil1fZQoaAZoCWgPQwj9gt2wrXpxQJSGlFKUaBVL6mgWR0CwUeT2OAAidX2UKGgGaAloD0MIB3sTQzKIcECUhpRSlGgVS9xoFkdAsFHnb349HXV9lChoBmgJaA9DCMu9wKzQDm9AlIaUUpRoFUvraBZHQLBSELpzLfV1fZQoaAZoCWgPQwiR0QFJWCBwQJSGlFKUaBVL2WgWR0CwUhglnh86dX2UKGgGaAloD0MIpKt0d10Ac0CUhpRSlGgVS7JoFkdAsFIYEB8x9HV9lChoBmgJaA9DCO/Jw0KtESdAlIaUUpRoFUtsaBZHQLBSGV09yLh1fZQoaAZoCWgPQwj1ona/irttQJSGlFKUaBVL4mgWR0CwUiOF6AvtdX2UKGgGaAloD0MI3CqIgS5ecUCUhpRSlGgVS+JoFkdAsFI7OxB3R3V9lChoBmgJaA9DCPFjzF3L5XJAlIaUUpRoFUvPaBZHQLBSVc5Ke051fZQoaAZoCWgPQwhAEvbt5FFzQJSGlFKUaBVL62gWR0CwUlmUKRdQdX2UKGgGaAloD0MIED0pkxqQc0CUhpRSlGgVS9VoFkdAsFJehL5AQnV9lChoBmgJaA9DCOLJbmb0V1FAlIaUUpRoFUuMaBZHQLBSa21UlzF1fZQoaAZoCWgPQwjDD86njuhvQJSGlFKUaBVLyWgWR0CwUnpjH4oJdX2UKGgGaAloD0MIFt9Q+CzJcUCUhpRSlGgVS+doFkdAsFKsF5fMOnV9lChoBmgJaA9DCHdn7bbLXHFAlIaUUpRoFUvmaBZHQLBSr+98JD51fZQoaAZoCWgPQwhVpMLYQrpAQJSGlFKUaBVLq2gWR0CwUuOEVWS2dX2UKGgGaAloD0MIucK7XEQhc0CUhpRSlGgVS9poFkdAsFLqCJ40M3V9lChoBmgJaA9DCNNQo5Ck43JAlIaUUpRoFUvuaBZHQLBTBT3Zf2N1fZQoaAZoCWgPQwgmAP+Uqv9vQJSGlFKUaBVL1mgWR0CwUxHfEXLvdX2UKGgGaAloD0MIi4f3HJjAckCUhpRSlGgVS9ZoFkdAsFMZjBl+VnV9lChoBmgJaA9DCCNKe4Mvx3JAlIaUUpRoFUveaBZHQLBTMIBRyfd1fZQoaAZoCWgPQwgibHh6papTQJSGlFKUaBVLrmgWR0CwU0ELpiZwdX2UKGgGaAloD0MI3UCBd7KecECUhpRSlGgVS79oFkdAsFNDcJtzjnV9lChoBmgJaA9DCKSpnsy/3XBAlIaUUpRoFUvbaBZHQLBTSRZ2ZAp1fZQoaAZoCWgPQwhKRPgXQYZyQJSGlFKUaBVNBQFoFkdAsFNVz90ihXV9lChoBmgJaA9DCChjfJh9WHBAlIaUUpRoFUvfaBZHQLBTbivxH5J1fZQoaAZoCWgPQwhBnfLoxhlwQJSGlFKUaBVL42gWR0CwU5EAggX/dX2UKGgGaAloD0MIUwYOaOlgT0CUhpRSlGgVS41oFkdAsFOYvWYnfHV9lChoBmgJaA9DCMms3uE2P3FAlIaUUpRoFUvEaBZHQLBTnaUzKtB1fZQoaAZoCWgPQwii0R3EDnpwQJSGlFKUaBVLymgWR0CwU6hiXpnpdX2UKGgGaAloD0MI7ZxmgbZTcECUhpRSlGgVTSEBaBZHQLBTtnNgSe11fZQoaAZoCWgPQwi94qlHWhFzQJSGlFKUaBVL02gWR0CwU+SlabF1dX2UKGgGaAloD0MI4NkeveEmRkCUhpRSlGgVS5FoFkdAsFPx1RtP6HV9lChoBmgJaA9DCD/kLVf/p3FAlIaUUpRoFUvpaBZHQLBUJVpblil1fZQoaAZoCWgPQwjFxryO+HhxQJSGlFKUaBVLzWgWR0CwVEkn9ehPdX2UKGgGaAloD0MIPKQYIJE5ckCUhpRSlGgVS9toFkdAsFRVKK5083V9lChoBmgJaA9DCOYEbXL4uWBAlIaUUpRoFU3oA2gWR0CwVGCx7iQ1dX2UKGgGaAloD0MImRJJ9LIyb0CUhpRSlGgVS75oFkdAsFRiQIUrTnV9lChoBmgJaA9DCOMcdXScXXNAlIaUUpRoFUvzaBZHQLBUZNFz+3p1fZQoaAZoCWgPQwhxrmGGhshxQJSGlFKUaBVNFAFoFkdAsFR2KrJbMXV9lChoBmgJaA9DCAdEiCvnRm9AlIaUUpRoFUu+aBZHQLBUgg3Lmp51fZQoaAZoCWgPQwh3L/fJETVwQJSGlFKUaBVLzWgWR0CwVJnogV45dX2UKGgGaAloD0MIIZOMnEWbcUCUhpRSlGgVTRUBaBZHQLBUraxHG0h1fZQoaAZoCWgPQwivl6YIcM1wQJSGlFKUaBVL12gWR0CwVLS08eS0dX2UKGgGaAloD0MIKV36l2QncUCUhpRSlGgVS9FoFkdAsFS7k1dgOXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-lowlatency-x86_64-with-glibc2.29 #123-Ubuntu SMP PREEMPT Fri Apr 8 09:52:18 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}