init test
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-rc.zip +2 -2
- ppo-LunarLander-rc/data +35 -28
- ppo-LunarLander-rc/policy.optimizer.pth +2 -2
- ppo-LunarLander-rc/policy.pth +2 -2
- ppo-LunarLander-rc/system_info.txt +4 -4
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: -1128.76 +/- 885.88
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f86ad614440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f86ad6144d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f86ad614560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f86ad6145f0>", "_build": "<function ActorCriticPolicy._build at 0x7f86ad614680>", "forward": "<function ActorCriticPolicy.forward at 0x7f86ad614710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f86ad6147a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f86ad614830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f86ad6148c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f86ad614950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f86ad6149e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f86ad65cb40>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAZpKQId2OBHFnsR7Jaa6/sZfXLqMlnLIlPGPisdt2gn459/iIPdzo7uC7FSU3ciGeMN8mEIVOzqUKprHpdC+aiChxSdC5N5+VKS98qtcTMbgS151yJIQbw43TDtgFi2sEinrCEFYtS6en/6//ob8FsfDMECAUkNnGwF5/jOhp+Yu6V77KjnRe57IHYlwG+0cQDil/NRgVlG+8spbn4wZSzqteX7zSGeSbM5JAsEaufTbfc9Odb0KTrbPwAjfgFyb0MH+gA2OqVF7Ra9EHURKc2B/t0KMQRKhz49aO1UE88JdZ70C4LlBvdbFHMa66yGLCEqMmDDlffJIRxySjq72m2XX9BxlQlKcIFjxrEH1haMIdQumSCIgvTwwFC1LvUuan+Q8nFODszm6sGDcL5xuRiyd2y7O3130fUAHnjeqYwfmKLfRyaeMy2BcbUhLESswGzAyZb1BfBxi22ldAdcmNJnO39CY2/ymZ2yJ4M55qGNUMEIwlM5bmve2U8xEerB5rwqfmfjg6BGpAYMgOkFctFjlezz2w13cVZRf2l4qHxu5IZeK0ovTosoDAkTtUSUkCvou/TNWU2vD5xmKggGjmgvDIT27jI4d0Yq4l1eTe/TE544wRxvlrJjKq/pZP83LtpxrdLRm64ef6IcPhFswBOeimYoi4HEV/AEWZXicXGwp5BUcmbqkywvBzIpbMzFPYIfOfkvnpFA6oLNEd+UGlVH6c5mZ3fHM8dRpmKAd4icX2LrtS1DX5i4zavQrOwQGcjFFLRELkn8KRCuGyD3nv8llzIOuCoRkR828/fVxmHrPMNN40Y+dQiOH/t/gMYwlX6caxQL5GqDnmu9b7pXNGlQRuTdulZ63tlR2ZP6T59AVJHJodYBYu5urJc64RRdLLl385qKbyxmWINC493lcsC+8Q1OUL/0+/NLhGwIAjLiAXefL5KsWpcTnRLumh3RBQPWUNLV1eleLuTpZJlgsOnFQdVOQ+D6NnTh475re078Oqy8RAIk9hCk23iqsShu7StSf54hkD2pz+R9O7KhBY1srsIBHwj9Mn1rfiyXxycYPLgWggcLk6i4d0MVcmBkg18zAI9Fdt2W3kUAgbqx7NP9EEq1fdC/fQ8o5PMSj695JA02Q6s9rmUm7eWMwywNjPpkKzYrmRoZD1ECqDpXUT4bmyKKXWJUAwd13Ryk24a+clRWwWVgfTLR0Ti7ZLGFFf5SBMfO/VvC97EHz+josJpZ65TT21PYDD6/JruxkFfP08st9A/Qs8svd36Pi3PzMI69nKnW9NynNkCfa8Y+yGRQUuS0kGDicLrOD9oOOjw0RB84gHNt2FrUxT9+P9Iv/iKOkC2vyHeEVKS6tgi2OrQ743EvF66703DeZrVxb/j2cQ5sY2pI8pPXQiWgjYx5xElVUkXd+80OJteCyv3WWiRNDNd9QNWrjsyW5/H5xW+T5NN2viGHyvtjcwqx1X+koMFSwhNNsLTBKBDFqNaCOouMQaYdHVFj1gKweBcNfTF2emqRn9aCK2+2bYuFR87z0PelzQf+08Y6W9W8UcUbIhsSZyzOzOCrY2NP9b3G5Tq5UfqyLKYujwEg4Typ1QY/aoDesnmuH+BjVysdykTq5L/OYKsdO32Vb7qdBTQE9v1xQXo9BdOwhzDbgme08AXpLALnbj1pPiLegri4DEf0wmaCjWLtoKNovBfLa6OkokKtngPfh2Q05PJ8s/rCb6zJZZeXwRGi1u8ayq2Ckc4i+ToQeMT3SH9FeFCu6wIlNCPtfA7OI+MjJ0GDln1FUewVXKhwl4GlkVd4AH+OI396tsJY2VDzAuovo1i0jjsBKl9O4fkErCfu+YZmdsC1ou8rrZv+WB3pJJGtNEQ8W2jishR0Cbsk66TWA0S3mw0O0iOxjD3V7WhLMZ3hkFZYPzRlUYIDwXfbRYDS1Rq6OXHof1zGczopr+nCrklwLIdcL6+ebboOyLZFc0xPpPhgU8XCZvu80aLlvgxlGBz0DSSmzJ1vrqJWYCeDjDuskGIm3WL3kUHDqIw1bLncsik7cBA7AGQQnRH4lot1Mi8Q9dKGvVQbd/F1OJUkHvqBOAJwRVCJUjTIwurY2M5KUqEEMCcrglGdT7COh3d8drr1bR3FZ7kYhWxT3gxdpHO1TVfHhLEhCwb8ENJB6fBBlcASRhpLc39sSbcX8Si1PnwxMNmN5ZaIUlhwqF6o6Hi02b00Q/I9RuZFAuq+N0Mrn8fcuuD1eB0y966UuYg5Z4vZbF+uPOk/hN6gA4GvtKUDSZs0JevcS7MfE/CCqMxTZ2Djf3s7Ee1tVVBMfw8hLQrXYg6DQ02XsnLHnrcWgWOU40y003dBI6ONvjEb1aSorEx6HKGQpBM0x+13nFtuiPI7w9kFHqcxPUFj0TqEdM0vx39C8TUW2QD8HsE4v6uvaItjdeXWOczoLjFw7ugyMwTzn5p6jn7CNWjvLma89UaWWe3BaXRQKcxRuomeDtcgmML785IVlldSBsJf/CD/JPGbYh89AUjimSE1rcUFQXdCV2rtEQGyjZBkTNh5IopcSkal6fOZQUPf/YlHggxTAr45VK2EljIHJvFTfwZ+W0XAGp9C50NCHJnFB7qW9CgiFfzAdp33UsMwryLJdHLU7VfCe/Ul9Zl78iyGrkRfZiTgKzq9TPXbdINuTVwKh5IEcgwtrCWlkjJYV2qYvcerOJG6SV1ahljZKqJt33tsV4C/rocSUXiXL44wg3pQ2/plpVL7LEkl1zAvpeYvizgvDtANdJ5snr3yEEdu90c4EiyTImNq2Ann2udSEWk+DY5xlrh39MWRE0K1iLFZSq4D1iwAPTCRNO1kCrcCcwdUvSNp9WxMVC/hpxtn4/HzglYuQSBq9tHtYML0VhbrCffANpxFXyrNqVE5l5CLoR3AxbIMkw8WKq7LmubXLqlfEKgogzvB1Iyrs/JqCLl2ijm+F0D+HBavDrJaueE/Jc8gxt9ffA9k/mU5tm19VgBv3GIu2dN/HP3CFAddJ+f/APnXEn5eljOEE9dYomRGNO6OkMT+Dzw9cUX5g2jvt/GqXm7IcucJv64+gw+K0wvOyxZguAdR/hO8zTAyw99Td+bcN7v02p0FH6c6fsMErVDhryNt/0bDoBImDfSKQe6RMoF1RQyfPjWSqvvRGwmwstyuHJokXn7R45DneVZoeoM1Dkt3Wz3hTtLt/OTLwaPTlVexXdWhXnFZ2fwZIgWJGgU3CAXl0FUwel7x2FEwrMFfsBie/ltHBBr2jev0y0K5VG0cQjSOWqXPabe7TUbjEh0NTzjKvnsqKKwXL9QZsB/4/FQoiAhG0qnTMYlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNQAF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 1001472, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651680057.8420744, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA1G8D2TKbA/Rr/CPl3Tg77z3Qg+QoWrPQAAAAAAAAAA2geTvlNeFj+qcz+9wf+LvuMWgjx1SYO8AAAAAAAAAAAdpZ0+iiVJPHx8nTqygjI5jDGhPRbAjTkAAIA/AACAP21tLr4f8aw8kSY0O9wnprkX9Tq+9f2LugAAgD8AAIA/gBYKvgULhLtldt24q+YCt1Ip4TxqMRE4AACAPwAAgD8m3Bw+4WT8O7LjXjqdUjM4IrGRPYaxkrkAAIA/AACAP/pfOL4KTUE8fsFDPIUNYjzm6Xe+bVmBPQAAgD8AAIA/SqoHP313Gj8CvpU7pyMzvruypzy7BtK9AAAAAAAAAACNsug9h+ONP5tcwD26S4q+YdItPcL/Or0AAAAAAAAAALZa9b4olpE+zZRHvtD4kb6JbWu9LsmXvAAAAAAAAAAALXoEvqRCCLvhlEg7QeweONBBZTzmUm+6AACAPwAAgD8zwMo9rq2EuiTLhDvfuNI2IxqGOvaQmroAAIA/AACAP3NPHT4K6Ik+RC6KvIkpPL6uTb67ktbaPQAAAAAAAAAAADYNPHuimrrm6FU87AA0tuwxv7o8Fii1AACAPwAAgD/gQBG+rsrXO3FawzqiB1K4/FZzvXOZCLoAAIA/AACAP2qSu754qao80ngbvIoFLbkJ2gK9wtRfOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIHwo0ZJrYkCUhpRSlIwBbJRN6AOMAXSUR0Cka8JcgQpXdX2UKGgGaAloD0MID2H8NO4HYUCUhpRSlGgVTbkBaBZHQKRzyoy9EkV1fZQoaAZoCWgPQwhGC9C2mmVXQJSGlFKUaBVN6ANoFkdApHfwHzH0b3V9lChoBmgJaA9DCKpiKv2EmVxAlIaUUpRoFU3oA2gWR0CkeRGRNh3JdX2UKGgGaAloD0MI4UGz697qWECUhpRSlGgVTegDaBZHQKR5H3bmEGt1fZQoaAZoCWgPQwgrFyr/WvZUQJSGlFKUaBVN6ANoFkdApHtKIvalDXV9lChoBmgJaA9DCAoxl1Ttym5AlIaUUpRoFU2dAWgWR0CkfgLl3hXKdX2UKGgGaAloD0MIV3vYCwUZVUCUhpRSlGgVTegDaBZHQKSANeIl+mZ1fZQoaAZoCWgPQwiy2vy/6rtgQJSGlFKUaBVN6ANoFkdApIChSWJJoXV9lChoBmgJaA9DCH+/mC3ZBWVAlIaUUpRoFU1zAmgWR0CkgU6RISUUdX2UKGgGaAloD0MIZDvfT437MkCUhpRSlGgVS+1oFkdApISX24/eL3V9lChoBmgJaA9DCNLkYgysnFhAlIaUUpRoFU3oA2gWR0Cki2eFlCkXdX2UKGgGaAloD0MIsJKP3QUDWkCUhpRSlGgVTegDaBZHQKSMkKpDNQl1fZQoaAZoCWgPQwhD5V/LK11nQJSGlFKUaBVNFAJoFkdApI4C+JxecHV9lChoBmgJaA9DCFqeB3dn6VtAlIaUUpRoFU3oA2gWR0CkjwbsOXmedX2UKGgGaAloD0MIkga3tQVXYUCUhpRSlGgVTegDaBZHQKSQUMy8BdV1fZQoaAZoCWgPQwgdzCbAsPRnQJSGlFKUaBVNdgFoFkdApJGu40/GEXV9lChoBmgJaA9DCA1tADYgl15AlIaUUpRoFU3oA2gWR0CkkdWD6FdtdX2UKGgGaAloD0MIrTWU2ouiX0CUhpRSlGgVTegDaBZHQKSV6AuqWC51fZQoaAZoCWgPQwieYWpLHeZDwJSGlFKUaBVL72gWR0CklkbtAs06dX2UKGgGaAloD0MIEY/Ey9NvWUCUhpRSlGgVTegDaBZHQKSaekY4yXV1fZQoaAZoCWgPQwicTUcAN8VSwJSGlFKUaBVL8GgWR0Ckm+AS39aVdX2UKGgGaAloD0MInRN7aB+rLcCUhpRSlGgVTUsBaBZHQKSc6dgfEGZ1fZQoaAZoCWgPQwiTjnIwm8BGwJSGlFKUaBVNRAFoFkdApJ/TcbiqAHV9lChoBmgJaA9DCJViR+NQ8VTAlIaUUpRoFU1CAWgWR0Cko/Rri2lVdX2UKGgGaAloD0MIw/UoXI8cX0CUhpRSlGgVTegDaBZHQKSmDO/L1VZ1fZQoaAZoCWgPQwhiEFg5NB9hQJSGlFKUaBVN6ANoFkdApKbIzguRLnV9lChoBmgJaA9DCGsNpfYi+VFAlIaUUpRoFU3oA2gWR0CkqIX7DVH4dX2UKGgGaAloD0MIvwzGiEQRRsCUhpRSlGgVS/toFkdApKqxvegte3V9lChoBmgJaA9DCN8WLNUFnFZAlIaUUpRoFU3oA2gWR0Ckqrq8lHBldX2UKGgGaAloD0MILGUZ4liqbUCUhpRSlGgVTXYBaBZHQKSr7rTH80l1fZQoaAZoCWgPQwgL0SFwJMJQQJSGlFKUaBVN6ANoFkdApKysZgogFHV9lChoBmgJaA9DCJ1LcVVZu2BAlIaUUpRoFU3oA2gWR0CkrTejEehgdX2UKGgGaAloD0MIlS2SdqOdXUCUhpRSlGgVTegDaBZHQKSv60Nz8xd1fZQoaAZoCWgPQwhF1ESfj5oswJSGlFKUaBVNKwFoFkdApLQ9CTlkpnV9lChoBmgJaA9DCPUUOUTc/AzAlIaUUpRoFU0lAWgWR0CktdA+yJKrdX2UKGgGaAloD0MIesiUD0FhR8CUhpRSlGgVTTQBaBZHQKS2Wkona391fZQoaAZoCWgPQwhOnUfF//FQQJSGlFKUaBVN6ANoFkdApLaEFGG21HV9lChoBmgJaA9DCO/H7ZfPaWFAlIaUUpRoFU3oA2gWR0Ckt5tMPBi1dX2UKGgGaAloD0MIGVbxRuZZWECUhpRSlGgVTegDaBZHQKS5lgXuVop1fZQoaAZoCWgPQwgpe0s5X0wQQJSGlFKUaBVNQQFoFkdApLnITAWSEHV9lChoBmgJaA9DCChJ10w+QmtAlIaUUpRoFU16AWgWR0CkumjRc/t6dX2UKGgGaAloD0MI8S4X8Z0mQcCUhpRSlGgVTR8BaBZHQKS69ydWhh91fZQoaAZoCWgPQwgVqMXgYXhbQJSGlFKUaBVN6ANoFkdApL4r6ab4J3V9lChoBmgJaA9DCC8xlumXeEvAlIaUUpRoFUvZaBZHQKTBtkuHvc91fZQoaAZoCWgPQwg9Sbpm8tZbQJSGlFKUaBVN6ANoFkdApMJF8LKFI3V9lChoBmgJaA9DCLH9ZIyPqWVAlIaUUpRoFU2BAWgWR0CkwzRGUfPpdX2UKGgGaAloD0MI6Nms+lzxYECUhpRSlGgVTegDaBZHQKTFKD/2kBV1fZQoaAZoCWgPQwh+j/rrFXhSQJSGlFKUaBVN6ANoFkdApMwZUaQ3gnV9lChoBmgJaA9DCLwC0ZMy5WVAlIaUUpRoFU21AWgWR0CkzPTdUKiPdX2UKGgGaAloD0MIdhppqbwJWUCUhpRSlGgVTegDaBZHQKTONN5+pfh1fZQoaAZoCWgPQwiT36KTpdRJQJSGlFKUaBVN6ANoFkdApM705wOvuHV9lChoBmgJaA9DCLDna5bLAE5AlIaUUpRoFU3oA2gWR0Ck1ZLf+CK8dX2UKGgGaAloD0MI7lwY6UWBakCUhpRSlGgVTb4BaBZHQKTY0A1ejVR1fZQoaAZoCWgPQwiBy2PNyEJGwJSGlFKUaBVNGAFoFkdApNnR8x9G7XV9lChoBmgJaA9DCKHbSxqjST/AlIaUUpRoFU0cAWgWR0Ck2r52pyZKdX2UKGgGaAloD0MI/wdYq3aHQsCUhpRSlGgVTRoBaBZHQKTbbGtITXd1fZQoaAZoCWgPQwilEp7Q615pQJSGlFKUaBVNfwFoFkdApN0P9JjDsXV9lChoBmgJaA9DCKH3xhAAVFlAlIaUUpRoFU3oA2gWR0Ck3/vJJXhgdX2UKGgGaAloD0MIRZ+PMuIbWUCUhpRSlGgVTegDaBZHQKTgg21lXil1fZQoaAZoCWgPQwhoXDgQkgJaQJSGlFKUaBVN6ANoFkdApOCoIQe3hHV9lChoBmgJaA9DCIYEjC5vZGFAlIaUUpRoFU3oA2gWR0Ck4bjJuEVWdX2UKGgGaAloD0MI9E4F3PP7WkCUhpRSlGgVTegDaBZHQKTjMpd8iOh1fZQoaAZoCWgPQwhlVYSbjKBDwJSGlFKUaBVL9GgWR0Ck41Pxx1gZdX2UKGgGaAloD0MI3gN0X05OYECUhpRSlGgVTegDaBZHQKTkccawUxp1fZQoaAZoCWgPQwiUwOYcPBMDQJSGlFKUaBVL2GgWR0Ck52Kk2xY8dX2UKGgGaAloD0MIilkvhvJNYECUhpRSlGgVTegDaBZHQKTnmdfb9Ih1fZQoaAZoCWgPQwj2B8pt+1pBwJSGlFKUaBVL6mgWR0Ck6N8FQl8gdX2UKGgGaAloD0MIpwhwehdlQcCUhpRSlGgVTUUBaBZHQKTpVylvZRN1fZQoaAZoCWgPQwiIodXJGdprQJSGlFKUaBVNigFoFkdApOosHv+fiHV9lChoBmgJaA9DCKHyr+WVv2FAlIaUUpRoFU3oA2gWR0Ck61TLns9kdX2UKGgGaAloD0MIZY7lXXUmYECUhpRSlGgVTegDaBZHQKTrywu/UON1fZQoaAZoCWgPQwiEu7N2219TQJSGlFKUaBVN6ANoFkdApOwmOZLIxXV9lChoBmgJaA9DCBuADYiQEGVAlIaUUpRoFU1xAWgWR0Ck8aPzOHFhdX2UKGgGaAloD0MImnrdIjAgRMCUhpRSlGgVS91oFkdApPLZYxL0z3V9lChoBmgJaA9DCIjX9Qt2eyrAlIaUUpRoFU0EAWgWR0Ck9XcneBQOdX2UKGgGaAloD0MIGqiMf5/5XkCUhpRSlGgVTegDaBZHQKT+IwGnn+11fZQoaAZoCWgPQwio/kEkQzozwJSGlFKUaBVNBgFoFkdApP56unuRcXV9lChoBmgJaA9DCBPyQc/mJmFAlIaUUpRoFU3oA2gWR0ClAWwaisXBdX2UKGgGaAloD0MI/g5FgT6QX0CUhpRSlGgVTegDaBZHQKUDXwZwXIl1fZQoaAZoCWgPQwiqRxrcVvhqQJSGlFKUaBVNmAFoFkdApQQj5dnkDXV9lChoBmgJaA9DCJ5g/3VuNmNAlIaUUpRoFU3oA2gWR0ClCUH/95yEdX2UKGgGaAloD0MIJqyNsRNWakCUhpRSlGgVTcYBaBZHQKUJwrtE5Qx1fZQoaAZoCWgPQwiM9+P2y2s0wJSGlFKUaBVNEwFoFkdApQoINb1RL3V9lChoBmgJaA9DCBr4UQ17SGJAlIaUUpRoFU3oA2gWR0ClCnmW2PT5dX2UKGgGaAloD0MIdGGkFzVZYUCUhpRSlGgVTegDaBZHQKUL+NrCWNZ1fZQoaAZoCWgPQwi5VKUtrlFCwJSGlFKUaBVNAAFoFkdApQwKPwNLDnV9lChoBmgJaA9DCH1Z2qm5qFtAlIaUUpRoFU3oA2gWR0ClDBkbYK6XdX2UKGgGaAloD0MIcH1Yb1SNakCUhpRSlGgVTZUBaBZHQKUO8fyPMjh1fZQoaAZoCWgPQwgYk/5eChcwQJSGlFKUaBVNKQFoFkdApQ97sByS3nV9lChoBmgJaA9DCFfrxOV4G1lAlIaUUpRoFU3oA2gWR0ClEDO6unuRdX2UKGgGaAloD0MIOL9hokG6W0CUhpRSlGgVTegDaBZHQKUQZhkRSP51fZQoaAZoCWgPQwiw5CoWv3pdQJSGlFKUaBVN6ANoFkdApREemDUVjHV9lChoBmgJaA9DCPkvEARIe2BAlIaUUpRoFU3oA2gWR0ClEfUjC53DdX2UKGgGaAloD0MIq0IDsWymOkCUhpRSlGgVS9RoFkdApRMmYQarFXV9lChoBmgJaA9DCJayDHEssmBAlIaUUpRoFU3oA2gWR0ClE9ircTJydX2UKGgGaAloD0MIxM2pZIACYkCUhpRSlGgVTegDaBZHQKUUMvAXVLB1fZQoaAZoCWgPQwjKb9HJUuhoQJSGlFKUaBVNWAFoFkdApRUdObiIcnV9lChoBmgJaA9DCOiiIeNRykBAlIaUUpRoFUu+aBZHQKUX610DEFZ1fZQoaAZoCWgPQwgqyTocXVE5QJSGlFKUaBVNCwFoFkdApRj6x5cC5nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1956, "n_steps": 128, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f07a59f0310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f07a59f03a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f07a59f0430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f07a59f04c0>", "_build": "<function ActorCriticPolicy._build at 0x7f07a59f0550>", "forward": "<function ActorCriticPolicy.forward at 0x7f07a59f05e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f07a59f0670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f07a59f0700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f07a59f0790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f07a59f0820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f07a59f08b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f07a59e4f60>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVTAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlEsKYXUu", "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>", "net_arch": [10]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 65536, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651688087.9216464, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKbLRr5ADXc/uQEZv92xD7/oibQ+NtE0PgAAAAAAAAAAratlPlYxuj9lp1M/yYSovXSZgr41YZq9AAAAAAAAAACGwyc+7/1kP57PEj/lDmO/KN9bvooY/b0AAAAAAAAAAAA+w7223LY/0izSvlG3k71Y7mk+Km4iPQAAAAAAAAAAtmTOPlWbmj/5c6Q+1a06v4KSWD5B8Ao+AAAAAAAAAAD9QMi+qW9rPwEdAL96GRK/W0QdvqqppjsAAAAAAAAAABqlVr2zO2E/TvkDv3fxMb+DDj0/0KzTPgAAAAAAAAAA81VZPl/viD81J0o+2UI+v4XpuD1FMok+AAAAAAAAAAALNJK+Eo1cPpNd+L4SdZq/q2MbPv6y370AAAAAAAAAAACueDy/RqY//IqyPVQv/b40Juk84SowPgAAAAAAAAAAM8+duzlftD86xPm+dZigveYVtzubTeI9AAAAAAAAAAAaUa09X7sEPhrSSr70Vp2/3DIyP0BT0LwAAAAAAAAAAABMUDzB4LA/F7PFPd0PC75vEfE8HJkVPgAAAAAAAAAAM8UIPoi2nz9xmR8/op38vk2CWr5NWFq+AAAAAAAAAAAayQM+lTWUP2ZhwD7Tj7e+AVk2Pj7OeD4AAAAAAAAAAMWezr6YQKg/FR5ov6VwOL9peXc/7kgJPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAABAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIU+i8xi5mU8CUhpRSlIwBbJRLSIwBdJRHQDq68ujASFp1fZQoaAZoCWgPQwgjpG5n35NswJSGlFKUaBVLSWgWR0A6wlKK508vdX2UKGgGaAloD0MI3eukviwoUcCUhpRSlGgVS3VoFkdAOs67iADq4nV9lChoBmgJaA9DCNUI/Uy98mjAlIaUUpRoFUuYaBZHQDrZ5VwPy091fZQoaAZoCWgPQwjql4i3Djx5wJSGlFKUaBVLVWgWR0A63NWEK3NLdX2UKGgGaAloD0MIpzy6ERYDccCUhpRSlGgVS2RoFkdAOuTpxFRYR3V9lChoBmgJaA9DCHQIHAm0/WHAlIaUUpRoFUuIaBZHQDrxCjUNKAd1fZQoaAZoCWgPQwg4Mo/8QSBxwJSGlFKUaBVLj2gWR0A69ACGN70GdX2UKGgGaAloD0MItp4hHDNtZcCUhpRSlGgVS3VoFkdAOvYllbu+iHV9lChoBmgJaA9DCEMewY2UAXDAlIaUUpRoFUuAaBZHQDr50xM36yl1fZQoaAZoCWgPQwiL+49MhxFYwJSGlFKUaBVLVmgWR0A7D0UXYUWVdX2UKGgGaAloD0MIcTs0LEZua8CUhpRSlGgVS2JoFkdAOxOE/SpiqnV9lChoBmgJaA9DCOHTnLzIeFjAlIaUUpRoFUt0aBZHQDshtSAH3UR1fZQoaAZoCWgPQwiv0t11NhpWwJSGlFKUaBVLZGgWR0A7KPQv6CUYdX2UKGgGaAloD0MIIxEawcYIWMCUhpRSlGgVS2RoFkdAOyra7EpAlnV9lChoBmgJaA9DCBzqd2Grj3DAlIaUUpRoFUtaaBZHQDs6E384xUN1fZQoaAZoCWgPQwg6svLLINx0wJSGlFKUaBVLYWgWR0A7PH+qBErodX2UKGgGaAloD0MI43FRLSKfUMCUhpRSlGgVS1ZoFkdAO0CYLLIPsnV9lChoBmgJaA9DCCSX/5CeDoDAlIaUUpRoFUt5aBZHQDtMifQKKHh1fZQoaAZoCWgPQwhya9JtyU13wJSGlFKUaBVLV2gWR0A7T1Bt1p0wdX2UKGgGaAloD0MIbAa4IFvJZcCUhpRSlGgVS0toFkdAO1ZO8CgbqHV9lChoBmgJaA9DCHPXEvJBqUPAlIaUUpRoFUtGaBZHQDtWTxG2Cul1fZQoaAZoCWgPQwik+s4vSuFwwJSGlFKUaBVLVWgWR0A7ZLApKBd2dX2UKGgGaAloD0MIuOhkqfU+dMCUhpRSlGgVS2NoFkdAO2YwAU+LWXV9lChoBmgJaA9DCOhqK/aXjnXAlIaUUpRoFUtpaBZHQDt37Jnxri51fZQoaAZoCWgPQwhhqMMK99V2wJSGlFKUaBVLfGgWR0A7e07KaG5+dX2UKGgGaAloD0MIBr6iWy8Ga8CUhpRSlGgVS0JoFkdAO34ZQ53kgnV9lChoBmgJaA9DCBe2ZisvhUvAlIaUUpRoFUtKaBZHQDuKtHQQcxV1fZQoaAZoCWgPQwgXRQ98jNNjwJSGlFKUaBVLSmgWR0A7mu7YkE9udX2UKGgGaAloD0MIW7BUF/DOYsCUhpRSlGgVS2BoFkdAO6CGJvYOD3V9lChoBmgJaA9DCCxkrgwqf3PAlIaUUpRoFUtxaBZHQDumAAhje9B1fZQoaAZoCWgPQwhEb/HwntlPwJSGlFKUaBVLQGgWR0A7qhUipvP1dX2UKGgGaAloD0MIStHKvcCsFkCUhpRSlGgVS15oFkdAO7vm9xp+MXV9lChoBmgJaA9DCKFI93MKkFbAlIaUUpRoFUtCaBZHQDu9aGHpKSR1fZQoaAZoCWgPQwjT3AphNRFdwJSGlFKUaBVLYWgWR0A7zbOu7pV0dX2UKGgGaAloD0MIDD7NyQuRa8CUhpRSlGgVS5JoFkdAO9VWsA/9pHV9lChoBmgJaA9DCJ4I4jycW2HAlIaUUpRoFUtraBZHQDvZuk1uR9x1fZQoaAZoCWgPQwie8BKc+qJgwJSGlFKUaBVLQGgWR0A74v5xiobXdX2UKGgGaAloD0MImRHeHoT4ZsCUhpRSlGgVS0xoFkdAO+ZJTVDrq3V9lChoBmgJaA9DCFQ6WP9nj3fAlIaUUpRoFUuDaBZHQDvudupCKJl1fZQoaAZoCWgPQwjkEkceiMlkwJSGlFKUaBVLXGgWR0A7+C/oJRfndX2UKGgGaAloD0MID5ccd0rRTMCUhpRSlGgVS0VoFkdAO/sdkrf+CXV9lChoBmgJaA9DCMhESrN54GjAlIaUUpRoFUt/aBZHQDwBJOFg2Ih1fZQoaAZoCWgPQwhgOq3boFhSwJSGlFKUaBVLRmgWR0A8ASOR1X/6dX2UKGgGaAloD0MI4KKTpda6VcCUhpRSlGgVS0VoFkdAPAgiu+yquXV9lChoBmgJaA9DCKacL/beGmnAlIaUUpRoFUuFaBZHQDwa4RVZLZl1fZQoaAZoCWgPQwhJgnAF1IN3wJSGlFKUaBVLW2gWR0A8K/hl18sudX2UKGgGaAloD0MIKNU+HU/jdsCUhpRSlGgVS3toFkdAPDBxT850bXV9lChoBmgJaA9DCAGjy5tD52fAlIaUUpRoFUthaBZHQDxM6xPfsNV1fZQoaAZoCWgPQwgxmpXtw/ZrwJSGlFKUaBVLRWgWR0A8Z7V8Ti84dX2UKGgGaAloD0MIu9QI/UzeXMCUhpRSlGgVS2BoFkdAPG5Pl+3H73V9lChoBmgJaA9DCISB597D61bAlIaUUpRoFUtXaBZHQDxuXa8Hv+h1fZQoaAZoCWgPQwikwthCkJFYwJSGlFKUaBVLQGgWR0A8c3dsSCe3dX2UKGgGaAloD0MIgnAFFOp4UMCUhpRSlGgVS2VoFkdAPHkeU6gdwXV9lChoBmgJaA9DCJBMh05P8nDAlIaUUpRoFUt7aBZHQDx5Jf6XSjR1fZQoaAZoCWgPQwimtz8XDa5fwJSGlFKUaBVLVWgWR0A8gQZ4wAU+dX2UKGgGaAloD0MIoYLDCyJNW8CUhpRSlGgVS1NoFkdAPIVAE+xGD3V9lChoBmgJaA9DCDvFqkEYDnPAlIaUUpRoFUtdaBZHQDySg00m+kB1fZQoaAZoCWgPQwht4XmpWElvwJSGlFKUaBVLb2gWR0A8mnHeaa1DdX2UKGgGaAloD0MIyZHOwMi5T8CUhpRSlGgVS3hoFkdAPJ9MPBi1A3V9lChoBmgJaA9DCOeO/pdrt3bAlIaUUpRoFUuQaBZHQDyvnoxHoX91fZQoaAZoCWgPQwg+WTFcHWVcwJSGlFKUaBVLVmgWR0A8sk/8l5WzdX2UKGgGaAloD0MI8yA9RQ6ZdMCUhpRSlGgVS2doFkdAPM2UGFBY3nV9lChoBmgJaA9DCMobYOa7gmvAlIaUUpRoFUt0aBZHQDzRX2dupCN1fZQoaAZoCWgPQwhJg9vawo5YwJSGlFKUaBVLV2gWR0A88l1bJOnEdX2UKGgGaAloD0MIbCIzF7hxWsCUhpRSlGgVS0loFkdAPPgdGRV6vHV9lChoBmgJaA9DCFkyx/Kuw2nAlIaUUpRoFUteaBZHQD0BWq94/u91fZQoaAZoCWgPQwii7C3lfOdZwJSGlFKUaBVLV2gWR0A9AuG9HtngdX2UKGgGaAloD0MIWOGWj6SpbMCUhpRSlGgVS2hoFkdAPRMy8BdUsHV9lChoBmgJaA9DCBmsONUaDXPAlIaUUpRoFUtbaBZHQD0tMRHww0x1fZQoaAZoCWgPQwj5vU1/9mdlwJSGlFKUaBVLh2gWR0A9LevZAY51dX2UKGgGaAloD0MIOYB+39/hgMCUhpRSlGgVS3doFkdAPTDxwyZa3nV9lChoBmgJaA9DCDRo6J+gYHfAlIaUUpRoFUtzaBZHQD08upS75Ed1fZQoaAZoCWgPQwix3xPrFEZ0wJSGlFKUaBVLb2gWR0A9ST4tYjjadX2UKGgGaAloD0MI9aJ2vwrLWMCUhpRSlGgVS1poFkdAPVxNqQA+6nV9lChoBmgJaA9DCAowLH++hFvAlIaUUpRoFUtgaBZHQD1xzmwJPZZ1fZQoaAZoCWgPQwh/orJhzYZswJSGlFKUaBVLf2gWR0A9kuuRs/IKdX2UKGgGaAloD0MI0m70MZ8McsCUhpRSlGgVS0hoFkdAPaqhHskY43V9lChoBmgJaA9DCB123zE8rlrAlIaUUpRoFUtlaBZHQD2xkbxVhkR1fZQoaAZoCWgPQwiXNhyWBvRhwJSGlFKUaBVLV2gWR0A9sxOtW+49dX2UKGgGaAloD0MII57sZsZCbsCUhpRSlGgVS5NoFkdAPb9MwlByCHV9lChoBmgJaA9DCHgMj/0su1TAlIaUUpRoFUtiaBZHQD3G7f51vEV1fZQoaAZoCWgPQwgriIGu/T1vwJSGlFKUaBVLQGgWR0A91WrOqvNedX2UKGgGaAloD0MICTICKlzYesCUhpRSlGgVS4VoFkdAPdcEeQuEmXV9lChoBmgJaA9DCMoV3uUie1fAlIaUUpRoFUtRaBZHQD3YhFEy+Ht1fZQoaAZoCWgPQwi4rpgR3jlSwJSGlFKUaBVLUmgWR0A92wLVnVXndX2UKGgGaAloD0MI2UP7WAEIccCUhpRSlGgVS2toFkdAPdsKXv6TGHV9lChoBmgJaA9DCOPCgZDsPnTAlIaUUpRoFUtkaBZHQD3jJp35eqt1fZQoaAZoCWgPQwh8X1yq0rBZwJSGlFKUaBVLSGgWR0A96SpiqhlEdX2UKGgGaAloD0MI+1sC8E9EXMCUhpRSlGgVS2VoFkdAPfK/M4cWCXV9lChoBmgJaA9DCK3AkNWt43jAlIaUUpRoFUtiaBZHQD3+1uzhP0t1fZQoaAZoCWgPQwhCd0mcFShzwJSGlFKUaBVLd2gWR0A+ITBZZB9kdX2UKGgGaAloD0MIXDy854BKfcCUhpRSlGgVS1RoFkdAPkJ4nndO7HV9lChoBmgJaA9DCGJnCp3XLWjAlIaUUpRoFUtbaBZHQD5ECih37k51fZQoaAZoCWgPQwj7ITZYOP9YwJSGlFKUaBVLSWgWR0A+RAbyYoiLdX2UKGgGaAloD0MIUFCKVu5AVcCUhpRSlGgVS0toFkdAPlHqeK8+R3V9lChoBmgJaA9DCGxfQC8cHHrAlIaUUpRoFUt4aBZHQD5V3PiT+vR1fZQoaAZoCWgPQwiN0qV/iWdzwJSGlFKUaBVLSmgWR0A+ZHAymALBdX2UKGgGaAloD0MICOOncW8sf8CUhpRSlGgVS3doFkdAPmXEMspXqHV9lChoBmgJaA9DCPn4hOy8BVLAlIaUUpRoFUuBaBZHQD5z2SMcZLt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-lowlatency-x86_64-with-glibc2.29 #123-Ubuntu SMP PREEMPT Fri Apr 8 09:52:18 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
|
ppo-LunarLander-rc.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45fcb0e890192da39583ce38fe2129d49fcd10f4823b9d8ba4bb36c6da5eb0b5
|
3 |
+
size 24002
|
ppo-LunarLander-rc/data
CHANGED
@@ -4,22 +4,29 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
},
|
21 |
-
"verbose": 0,
|
22 |
-
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
@@ -35,58 +42,58 @@
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
-
":serialized:": "
|
39 |
"n": 4,
|
40 |
"_shape": [],
|
41 |
"dtype": "int64",
|
42 |
-
"_np_random":
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
-
":serialized:": "
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
-
":serialized:": "
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
-
"n_steps":
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
-
"batch_size":
|
86 |
"n_epochs": 4,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
-
":serialized:": "
|
90 |
},
|
91 |
"clip_range_vf": null,
|
92 |
"normalize_advantage": true,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f07a59f0310>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f07a59f03a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f07a59f0430>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f07a59f04c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f07a59f0550>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f07a59f05e0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f07a59f0670>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f07a59f0700>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f07a59f0790>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f07a59f0820>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f07a59f08b0>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f07a59e4f60>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gAWVTAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlEsKYXUu",
|
25 |
+
"activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
|
26 |
+
"net_arch": [
|
27 |
+
10
|
28 |
+
]
|
29 |
},
|
|
|
|
|
30 |
"observation_space": {
|
31 |
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
|
|
42 |
},
|
43 |
"action_space": {
|
44 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
45 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
46 |
"n": 4,
|
47 |
"_shape": [],
|
48 |
"dtype": "int64",
|
49 |
+
"_np_random": null
|
50 |
},
|
51 |
"n_envs": 16,
|
52 |
+
"num_timesteps": 65536,
|
53 |
+
"_total_timesteps": 50000,
|
54 |
"_num_timesteps_at_start": 0,
|
55 |
"seed": null,
|
56 |
"action_noise": null,
|
57 |
+
"start_time": 1651688087.9216464,
|
58 |
"learning_rate": 0.0003,
|
59 |
"tensorboard_log": null,
|
60 |
"lr_schedule": {
|
61 |
":type:": "<class 'function'>",
|
62 |
+
":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
63 |
},
|
64 |
"_last_obs": {
|
65 |
":type:": "<class 'numpy.ndarray'>",
|
66 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKbLRr5ADXc/uQEZv92xD7/oibQ+NtE0PgAAAAAAAAAAratlPlYxuj9lp1M/yYSovXSZgr41YZq9AAAAAAAAAACGwyc+7/1kP57PEj/lDmO/KN9bvooY/b0AAAAAAAAAAAA+w7223LY/0izSvlG3k71Y7mk+Km4iPQAAAAAAAAAAtmTOPlWbmj/5c6Q+1a06v4KSWD5B8Ao+AAAAAAAAAAD9QMi+qW9rPwEdAL96GRK/W0QdvqqppjsAAAAAAAAAABqlVr2zO2E/TvkDv3fxMb+DDj0/0KzTPgAAAAAAAAAA81VZPl/viD81J0o+2UI+v4XpuD1FMok+AAAAAAAAAAALNJK+Eo1cPpNd+L4SdZq/q2MbPv6y370AAAAAAAAAAACueDy/RqY//IqyPVQv/b40Juk84SowPgAAAAAAAAAAM8+duzlftD86xPm+dZigveYVtzubTeI9AAAAAAAAAAAaUa09X7sEPhrSSr70Vp2/3DIyP0BT0LwAAAAAAAAAAABMUDzB4LA/F7PFPd0PC75vEfE8HJkVPgAAAAAAAAAAM8UIPoi2nz9xmR8/op38vk2CWr5NWFq+AAAAAAAAAAAayQM+lTWUP2ZhwD7Tj7e+AVk2Pj7OeD4AAAAAAAAAAMWezr6YQKg/FR5ov6VwOL9peXc/7kgJPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
67 |
},
|
68 |
"_last_episode_starts": {
|
69 |
":type:": "<class 'numpy.ndarray'>",
|
70 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAABAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
71 |
},
|
72 |
"_last_original_obs": null,
|
73 |
"_episode_num": 0,
|
74 |
"use_sde": false,
|
75 |
"sde_sample_freq": -1,
|
76 |
+
"_current_progress_remaining": -0.3107200000000001,
|
77 |
"ep_info_buffer": {
|
78 |
":type:": "<class 'collections.deque'>",
|
79 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIU+i8xi5mU8CUhpRSlIwBbJRLSIwBdJRHQDq68ujASFp1fZQoaAZoCWgPQwgjpG5n35NswJSGlFKUaBVLSWgWR0A6wlKK508vdX2UKGgGaAloD0MI3eukviwoUcCUhpRSlGgVS3VoFkdAOs67iADq4nV9lChoBmgJaA9DCNUI/Uy98mjAlIaUUpRoFUuYaBZHQDrZ5VwPy091fZQoaAZoCWgPQwjql4i3Djx5wJSGlFKUaBVLVWgWR0A63NWEK3NLdX2UKGgGaAloD0MIpzy6ERYDccCUhpRSlGgVS2RoFkdAOuTpxFRYR3V9lChoBmgJaA9DCHQIHAm0/WHAlIaUUpRoFUuIaBZHQDrxCjUNKAd1fZQoaAZoCWgPQwg4Mo/8QSBxwJSGlFKUaBVLj2gWR0A69ACGN70GdX2UKGgGaAloD0MItp4hHDNtZcCUhpRSlGgVS3VoFkdAOvYllbu+iHV9lChoBmgJaA9DCEMewY2UAXDAlIaUUpRoFUuAaBZHQDr50xM36yl1fZQoaAZoCWgPQwiL+49MhxFYwJSGlFKUaBVLVmgWR0A7D0UXYUWVdX2UKGgGaAloD0MIcTs0LEZua8CUhpRSlGgVS2JoFkdAOxOE/SpiqnV9lChoBmgJaA9DCOHTnLzIeFjAlIaUUpRoFUt0aBZHQDshtSAH3UR1fZQoaAZoCWgPQwiv0t11NhpWwJSGlFKUaBVLZGgWR0A7KPQv6CUYdX2UKGgGaAloD0MIIxEawcYIWMCUhpRSlGgVS2RoFkdAOyra7EpAlnV9lChoBmgJaA9DCBzqd2Grj3DAlIaUUpRoFUtaaBZHQDs6E384xUN1fZQoaAZoCWgPQwg6svLLINx0wJSGlFKUaBVLYWgWR0A7PH+qBErodX2UKGgGaAloD0MI43FRLSKfUMCUhpRSlGgVS1ZoFkdAO0CYLLIPsnV9lChoBmgJaA9DCCSX/5CeDoDAlIaUUpRoFUt5aBZHQDtMifQKKHh1fZQoaAZoCWgPQwhya9JtyU13wJSGlFKUaBVLV2gWR0A7T1Bt1p0wdX2UKGgGaAloD0MIbAa4IFvJZcCUhpRSlGgVS0toFkdAO1ZO8CgbqHV9lChoBmgJaA9DCHPXEvJBqUPAlIaUUpRoFUtGaBZHQDtWTxG2Cul1fZQoaAZoCWgPQwik+s4vSuFwwJSGlFKUaBVLVWgWR0A7ZLApKBd2dX2UKGgGaAloD0MIuOhkqfU+dMCUhpRSlGgVS2NoFkdAO2YwAU+LWXV9lChoBmgJaA9DCOhqK/aXjnXAlIaUUpRoFUtpaBZHQDt37Jnxri51fZQoaAZoCWgPQwhhqMMK99V2wJSGlFKUaBVLfGgWR0A7e07KaG5+dX2UKGgGaAloD0MIBr6iWy8Ga8CUhpRSlGgVS0JoFkdAO34ZQ53kgnV9lChoBmgJaA9DCBe2ZisvhUvAlIaUUpRoFUtKaBZHQDuKtHQQcxV1fZQoaAZoCWgPQwgXRQ98jNNjwJSGlFKUaBVLSmgWR0A7mu7YkE9udX2UKGgGaAloD0MIW7BUF/DOYsCUhpRSlGgVS2BoFkdAO6CGJvYOD3V9lChoBmgJaA9DCCxkrgwqf3PAlIaUUpRoFUtxaBZHQDumAAhje9B1fZQoaAZoCWgPQwhEb/HwntlPwJSGlFKUaBVLQGgWR0A7qhUipvP1dX2UKGgGaAloD0MIStHKvcCsFkCUhpRSlGgVS15oFkdAO7vm9xp+MXV9lChoBmgJaA9DCKFI93MKkFbAlIaUUpRoFUtCaBZHQDu9aGHpKSR1fZQoaAZoCWgPQwjT3AphNRFdwJSGlFKUaBVLYWgWR0A7zbOu7pV0dX2UKGgGaAloD0MIDD7NyQuRa8CUhpRSlGgVS5JoFkdAO9VWsA/9pHV9lChoBmgJaA9DCJ4I4jycW2HAlIaUUpRoFUtraBZHQDvZuk1uR9x1fZQoaAZoCWgPQwie8BKc+qJgwJSGlFKUaBVLQGgWR0A74v5xiobXdX2UKGgGaAloD0MImRHeHoT4ZsCUhpRSlGgVS0xoFkdAO+ZJTVDrq3V9lChoBmgJaA9DCFQ6WP9nj3fAlIaUUpRoFUuDaBZHQDvudupCKJl1fZQoaAZoCWgPQwjkEkceiMlkwJSGlFKUaBVLXGgWR0A7+C/oJRfndX2UKGgGaAloD0MID5ccd0rRTMCUhpRSlGgVS0VoFkdAO/sdkrf+CXV9lChoBmgJaA9DCMhESrN54GjAlIaUUpRoFUt/aBZHQDwBJOFg2Ih1fZQoaAZoCWgPQwhgOq3boFhSwJSGlFKUaBVLRmgWR0A8ASOR1X/6dX2UKGgGaAloD0MI4KKTpda6VcCUhpRSlGgVS0VoFkdAPAgiu+yquXV9lChoBmgJaA9DCKacL/beGmnAlIaUUpRoFUuFaBZHQDwa4RVZLZl1fZQoaAZoCWgPQwhJgnAF1IN3wJSGlFKUaBVLW2gWR0A8K/hl18sudX2UKGgGaAloD0MIKNU+HU/jdsCUhpRSlGgVS3toFkdAPDBxT850bXV9lChoBmgJaA9DCAGjy5tD52fAlIaUUpRoFUthaBZHQDxM6xPfsNV1fZQoaAZoCWgPQwgxmpXtw/ZrwJSGlFKUaBVLRWgWR0A8Z7V8Ti84dX2UKGgGaAloD0MIu9QI/UzeXMCUhpRSlGgVS2BoFkdAPG5Pl+3H73V9lChoBmgJaA9DCISB597D61bAlIaUUpRoFUtXaBZHQDxuXa8Hv+h1fZQoaAZoCWgPQwikwthCkJFYwJSGlFKUaBVLQGgWR0A8c3dsSCe3dX2UKGgGaAloD0MIgnAFFOp4UMCUhpRSlGgVS2VoFkdAPHkeU6gdwXV9lChoBmgJaA9DCJBMh05P8nDAlIaUUpRoFUt7aBZHQDx5Jf6XSjR1fZQoaAZoCWgPQwimtz8XDa5fwJSGlFKUaBVLVWgWR0A8gQZ4wAU+dX2UKGgGaAloD0MIoYLDCyJNW8CUhpRSlGgVS1NoFkdAPIVAE+xGD3V9lChoBmgJaA9DCDvFqkEYDnPAlIaUUpRoFUtdaBZHQDySg00m+kB1fZQoaAZoCWgPQwht4XmpWElvwJSGlFKUaBVLb2gWR0A8mnHeaa1DdX2UKGgGaAloD0MIyZHOwMi5T8CUhpRSlGgVS3hoFkdAPJ9MPBi1A3V9lChoBmgJaA9DCOeO/pdrt3bAlIaUUpRoFUuQaBZHQDyvnoxHoX91fZQoaAZoCWgPQwg+WTFcHWVcwJSGlFKUaBVLVmgWR0A8sk/8l5WzdX2UKGgGaAloD0MI8yA9RQ6ZdMCUhpRSlGgVS2doFkdAPM2UGFBY3nV9lChoBmgJaA9DCMobYOa7gmvAlIaUUpRoFUt0aBZHQDzRX2dupCN1fZQoaAZoCWgPQwhJg9vawo5YwJSGlFKUaBVLV2gWR0A88l1bJOnEdX2UKGgGaAloD0MIbCIzF7hxWsCUhpRSlGgVS0loFkdAPPgdGRV6vHV9lChoBmgJaA9DCFkyx/Kuw2nAlIaUUpRoFUteaBZHQD0BWq94/u91fZQoaAZoCWgPQwii7C3lfOdZwJSGlFKUaBVLV2gWR0A9AuG9HtngdX2UKGgGaAloD0MIWOGWj6SpbMCUhpRSlGgVS2hoFkdAPRMy8BdUsHV9lChoBmgJaA9DCBmsONUaDXPAlIaUUpRoFUtbaBZHQD0tMRHww0x1fZQoaAZoCWgPQwj5vU1/9mdlwJSGlFKUaBVLh2gWR0A9LevZAY51dX2UKGgGaAloD0MIOYB+39/hgMCUhpRSlGgVS3doFkdAPTDxwyZa3nV9lChoBmgJaA9DCDRo6J+gYHfAlIaUUpRoFUtzaBZHQD08upS75Ed1fZQoaAZoCWgPQwix3xPrFEZ0wJSGlFKUaBVLb2gWR0A9ST4tYjjadX2UKGgGaAloD0MI9aJ2vwrLWMCUhpRSlGgVS1poFkdAPVxNqQA+6nV9lChoBmgJaA9DCAowLH++hFvAlIaUUpRoFUtgaBZHQD1xzmwJPZZ1fZQoaAZoCWgPQwh/orJhzYZswJSGlFKUaBVLf2gWR0A9kuuRs/IKdX2UKGgGaAloD0MI0m70MZ8McsCUhpRSlGgVS0hoFkdAPaqhHskY43V9lChoBmgJaA9DCB123zE8rlrAlIaUUpRoFUtlaBZHQD2xkbxVhkR1fZQoaAZoCWgPQwiXNhyWBvRhwJSGlFKUaBVLV2gWR0A9sxOtW+49dX2UKGgGaAloD0MII57sZsZCbsCUhpRSlGgVS5NoFkdAPb9MwlByCHV9lChoBmgJaA9DCHgMj/0su1TAlIaUUpRoFUtiaBZHQD3G7f51vEV1fZQoaAZoCWgPQwgriIGu/T1vwJSGlFKUaBVLQGgWR0A91WrOqvNedX2UKGgGaAloD0MICTICKlzYesCUhpRSlGgVS4VoFkdAPdcEeQuEmXV9lChoBmgJaA9DCMoV3uUie1fAlIaUUpRoFUtRaBZHQD3YhFEy+Ht1fZQoaAZoCWgPQwi4rpgR3jlSwJSGlFKUaBVLUmgWR0A92wLVnVXndX2UKGgGaAloD0MI2UP7WAEIccCUhpRSlGgVS2toFkdAPdsKXv6TGHV9lChoBmgJaA9DCOPCgZDsPnTAlIaUUpRoFUtkaBZHQD3jJp35eqt1fZQoaAZoCWgPQwh8X1yq0rBZwJSGlFKUaBVLSGgWR0A96SpiqhlEdX2UKGgGaAloD0MI+1sC8E9EXMCUhpRSlGgVS2VoFkdAPfK/M4cWCXV9lChoBmgJaA9DCK3AkNWt43jAlIaUUpRoFUtiaBZHQD3+1uzhP0t1fZQoaAZoCWgPQwhCd0mcFShzwJSGlFKUaBVLd2gWR0A+ITBZZB9kdX2UKGgGaAloD0MIXDy854BKfcCUhpRSlGgVS1RoFkdAPkJ4nndO7HV9lChoBmgJaA9DCGJnCp3XLWjAlIaUUpRoFUtbaBZHQD5ECih37k51fZQoaAZoCWgPQwj7ITZYOP9YwJSGlFKUaBVLSWgWR0A+RAbyYoiLdX2UKGgGaAloD0MIUFCKVu5AVcCUhpRSlGgVS0toFkdAPlHqeK8+R3V9lChoBmgJaA9DCGxfQC8cHHrAlIaUUpRoFUt4aBZHQD5V3PiT+vR1fZQoaAZoCWgPQwiN0qV/iWdzwJSGlFKUaBVLSmgWR0A+ZHAymALBdX2UKGgGaAloD0MICOOncW8sf8CUhpRSlGgVS3doFkdAPmXEMspXqHV9lChoBmgJaA9DCPn4hOy8BVLAlIaUUpRoFUuBaBZHQD5z2SMcZLt1ZS4="
|
80 |
},
|
81 |
"ep_success_buffer": {
|
82 |
":type:": "<class 'collections.deque'>",
|
83 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
84 |
},
|
85 |
+
"_n_updates": 16,
|
86 |
+
"n_steps": 1024,
|
87 |
"gamma": 0.999,
|
88 |
"gae_lambda": 0.98,
|
89 |
"ent_coef": 0.01,
|
90 |
"vf_coef": 0.5,
|
91 |
"max_grad_norm": 0.5,
|
92 |
+
"batch_size": 64,
|
93 |
"n_epochs": 4,
|
94 |
"clip_range": {
|
95 |
":type:": "<class 'function'>",
|
96 |
+
":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
97 |
},
|
98 |
"clip_range_vf": null,
|
99 |
"normalize_advantage": true,
|
ppo-LunarLander-rc/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9faa9aec73916a96db4951608bab9c7e5a28bfefab795ff4bb0c1744c4053eb6
|
3 |
+
size 4673
|
ppo-LunarLander-rc/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60a0dd5a37ef1527d7d80d8bdb44feb2f126d43c9447889312ae5c9320d4d447
|
3 |
+
size 2967
|
ppo-LunarLander-rc/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
OS: Linux-5.4.
|
2 |
-
Python: 3.
|
3 |
Stable-Baselines3: 1.5.0
|
4 |
-
PyTorch: 1.11.0+
|
5 |
GPU Enabled: True
|
6 |
-
Numpy: 1.
|
7 |
Gym: 0.21.0
|
|
|
1 |
+
OS: Linux-5.4.0-109-lowlatency-x86_64-with-glibc2.29 #123-Ubuntu SMP PREEMPT Fri Apr 8 09:52:18 UTC 2022
|
2 |
+
Python: 3.8.10
|
3 |
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu102
|
5 |
GPU Enabled: True
|
6 |
+
Numpy: 1.22.3
|
7 |
Gym: 0.21.0
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ddb612df6b2276217a48ffc2eb2beb273111e6ab3817729dda91f49bc21e7b9
|
3 |
+
size 146386
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": -1128.761531242763, "std_reward": 885.8789298311565, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T02:15:38.373867"}
|