End of training
Browse files
README.md
CHANGED
@@ -1,201 +1,119 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
-
|
34 |
-
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
base_model: facebook/w2v-bert-2.0
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- common_voice_16_0
|
8 |
+
metrics:
|
9 |
+
- wer
|
10 |
+
model-index:
|
11 |
+
- name: wav2vec2-bert-mas-ex
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Automatic Speech Recognition
|
15 |
+
type: automatic-speech-recognition
|
16 |
+
dataset:
|
17 |
+
name: common_voice_16_0
|
18 |
+
type: common_voice_16_0
|
19 |
+
config: mn
|
20 |
+
split: test
|
21 |
+
args: mn
|
22 |
+
metrics:
|
23 |
+
- name: Wer
|
24 |
+
type: wer
|
25 |
+
value: 0.6300848379377855
|
26 |
---
|
27 |
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# wav2vec2-bert-mas-ex
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_0 dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.7763
|
36 |
+
- Wer: 0.6301
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 2
|
57 |
+
- eval_batch_size: 8
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_steps: 300
|
62 |
+
- num_epochs: 5
|
63 |
+
- mixed_precision_training: Native AMP
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
68 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
69 |
+
| 2.424 | 0.12 | 300 | 1.3270 | 0.8863 |
|
70 |
+
| 1.2288 | 0.23 | 600 | 1.1525 | 0.8299 |
|
71 |
+
| 1.0443 | 0.35 | 900 | 0.9812 | 0.7729 |
|
72 |
+
| 1.0082 | 0.46 | 1200 | 0.9045 | 0.6852 |
|
73 |
+
| 0.8698 | 0.58 | 1500 | 0.9797 | 0.7063 |
|
74 |
+
| 0.8649 | 0.69 | 1800 | 0.9071 | 0.6724 |
|
75 |
+
| 0.8268 | 0.81 | 2100 | 0.8387 | 0.6716 |
|
76 |
+
| 0.8428 | 0.93 | 2400 | 0.8392 | 0.6623 |
|
77 |
+
| 0.6933 | 1.04 | 2700 | 0.7124 | 0.5966 |
|
78 |
+
| 0.6618 | 1.16 | 3000 | 0.7056 | 0.5688 |
|
79 |
+
| 0.6578 | 1.27 | 3300 | 0.7003 | 0.5708 |
|
80 |
+
| 0.6331 | 1.39 | 3600 | 0.6798 | 0.5578 |
|
81 |
+
| 0.5873 | 1.5 | 3900 | 0.6993 | 0.5453 |
|
82 |
+
| 0.6076 | 1.62 | 4200 | 0.6562 | 0.5268 |
|
83 |
+
| 0.5359 | 1.74 | 4500 | 0.6837 | 0.5735 |
|
84 |
+
| 0.6807 | 1.85 | 4800 | 0.6495 | 0.5272 |
|
85 |
+
| 0.5945 | 1.97 | 5100 | 0.6434 | 0.5058 |
|
86 |
+
| 0.5059 | 2.08 | 5400 | 0.6237 | 0.4855 |
|
87 |
+
| 0.5244 | 2.2 | 5700 | 0.6334 | 0.4749 |
|
88 |
+
| 0.5052 | 2.31 | 6000 | 0.6831 | 0.4976 |
|
89 |
+
| 0.5249 | 2.43 | 6300 | 0.6339 | 0.4919 |
|
90 |
+
| 0.5537 | 2.55 | 6600 | 0.6541 | 0.4990 |
|
91 |
+
| 0.6387 | 2.66 | 6900 | 0.8375 | 0.5829 |
|
92 |
+
| 0.669 | 2.78 | 7200 | 0.9152 | 0.6289 |
|
93 |
+
| 0.8881 | 2.89 | 7500 | 0.7704 | 0.6191 |
|
94 |
+
| 1.184 | 3.01 | 7800 | 0.8139 | 0.6866 |
|
95 |
+
| 1.0933 | 3.12 | 8100 | 0.7721 | 0.6518 |
|
96 |
+
| 1.3588 | 3.24 | 8400 | 0.7368 | 0.6152 |
|
97 |
+
| 1.4604 | 3.36 | 8700 | 0.7376 | 0.6158 |
|
98 |
+
| 1.2902 | 3.47 | 9000 | 0.7451 | 0.6188 |
|
99 |
+
| 1.3137 | 3.59 | 9300 | 0.7493 | 0.6194 |
|
100 |
+
| 1.3009 | 3.7 | 9600 | 0.7454 | 0.6164 |
|
101 |
+
| 1.3757 | 3.82 | 9900 | 0.7515 | 0.6289 |
|
102 |
+
| 1.2412 | 3.93 | 10200 | 0.7629 | 0.6237 |
|
103 |
+
| 1.2835 | 4.05 | 10500 | 0.7760 | 0.6351 |
|
104 |
+
| 1.3803 | 4.17 | 10800 | 0.7718 | 0.6273 |
|
105 |
+
| 1.325 | 4.28 | 11100 | 0.7763 | 0.6301 |
|
106 |
+
| 1.3798 | 4.4 | 11400 | 0.7763 | 0.6301 |
|
107 |
+
| 1.3421 | 4.51 | 11700 | 0.7763 | 0.6301 |
|
108 |
+
| 1.2834 | 4.63 | 12000 | 0.7763 | 0.6301 |
|
109 |
+
| 1.4757 | 4.74 | 12300 | 0.7763 | 0.6301 |
|
110 |
+
| 1.4171 | 4.86 | 12600 | 0.7763 | 0.6301 |
|
111 |
+
| 1.2838 | 4.97 | 12900 | 0.7763 | 0.6301 |
|
112 |
+
|
113 |
+
|
114 |
+
### Framework versions
|
115 |
+
|
116 |
+
- Transformers 4.38.2
|
117 |
+
- Pytorch 2.2.1+cu121
|
118 |
+
- Datasets 2.15.0
|
119 |
+
- Tokenizers 0.15.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
runs/Mar27_06-35-46_0260854e97c8/events.out.tfevents.1711521517.0260854e97c8.8984.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2150c19b53ab5add7c62c02434bae4268dee0fdcee42ee6e29659213aec0d1a
|
3 |
+
size 28935
|