File size: 6,492 Bytes
db26c81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import math
import torch
import torch.nn.functional as F

from torch import nn
from torch.utils.checkpoint import checkpoint


class MultiHeadAttention(nn.Module):
    def __init__(self, heads, hidden_dim):
        super(MultiHeadAttention, self).__init__()

        assert hidden_dim % heads == 0

        self.heads = heads
        head_dim = hidden_dim // heads
        self.alpha = 1 / math.sqrt(head_dim)

        self.nn_Q = nn.Parameter(torch.Tensor(heads, hidden_dim, head_dim))
        self.nn_O = nn.Parameter(torch.Tensor(hidden_dim, hidden_dim))

        for param in self.parameters():
            stdv = 1. / math.sqrt(param.size(-1))
            param.data.uniform_(-stdv, stdv)

    def forward(self, q, K, V, mask):
        batch_size, query_num, hidden_dim = q.size()

        size = (self.heads, batch_size, query_num, -1)

        q = q.reshape(-1, hidden_dim)
        Q = torch.matmul(q, self.nn_Q).view(size)

        value_num = V.size(2)
        heads_batch = self.heads * batch_size
        Q = Q.view(heads_batch, query_num, -1)
        K = K.view(heads_batch, value_num, -1).transpose(1, 2)

        S = masked_tensor(mask, self.heads)
        S = S.view(heads_batch, query_num, value_num)
        S.baddbmm_(Q, K, alpha=self.alpha)
        S = S.view(self.heads, batch_size, query_num, value_num)

        S = F.softmax(S, dim=-1)

        x = torch.matmul(S, V).permute(1, 2, 0, 3)
        x = x.reshape(batch_size, query_num, -1)
        x = torch.matmul(x, self.nn_O)
        return x


class Decode(nn.Module):

    def __init__(self, nn_args):
        super(Decode, self).__init__()

        self.nn_args = nn_args

        heads = nn_args['decode_atten_heads']
        hidden_dim = nn_args['decode_hidden_dim']

        self.heads = heads
        self.alpha = 1 / math.sqrt(hidden_dim)

        if heads > 0:
            assert hidden_dim % heads == 0
            head_dim = hidden_dim // heads
            self.nn_K = nn.Parameter(torch.Tensor(heads, hidden_dim, head_dim))
            self.nn_V = nn.Parameter(torch.Tensor(heads, hidden_dim, head_dim))
            self.nn_mha = MultiHeadAttention(heads, hidden_dim)

        decode_rnn = nn_args.setdefault('decode_rnn', 'LSTM')
        assert decode_rnn in ('GRU', 'LSTM', 'NONE')
        if decode_rnn == 'GRU':
            self.nn_rnn_cell = nn.GRUCell(hidden_dim, hidden_dim)
        elif decode_rnn == 'LSTM':
            self.nn_rnn_cell = nn.LSTMCell(hidden_dim, hidden_dim)
        else:
            self.nn_rnn_cell = None

        self.vars_dim = sum(nn_args['variable_dim'].values())
        if self.vars_dim > 0:
            atten_type = nn_args.setdefault('decode_atten_type', 'add')
            assert atten_type == 'add', "must be addition attention when vars_dim > 0, {}".format(atten_type)
            self.nn_A = nn.Parameter(torch.Tensor(self.vars_dim, hidden_dim))
            self.nn_B = nn.Parameter(torch.Tensor(hidden_dim))
        else:
            atten_type = nn_args.setdefault('decode_atten_type', 'prod')

        if atten_type == 'add':
            self.nn_W = nn.Parameter(torch.Tensor(hidden_dim))
        else:
            self.nn_W = None

        for param in self.parameters():
            stdv = 1 / math.sqrt(param.size(-1))
            param.data.uniform_(-stdv, stdv)

    def forward(self, X, K, V, query, state1, state2, varfeat, mask, chosen, sample_p, clip, mode, memopt=0):
        if self.training and memopt > 2:
            state1, state2 = checkpoint(self.rnn_step, query, state1, state2)
        else:
            state1, state2 = self.rnn_step(query, state1, state2)

        query = state1
        NP = X.size(0)
        NR = query.size(0) // NP
        batch_size = query.size(0)
        if self.heads > 0:
            query = query.view(NP, NR, -1)
            if self.training and memopt > 1:
                query = checkpoint(self.nn_mha, query, K, V, mask)
            else:
                query = self.nn_mha(query, K, V, mask)

            query = query.view(batch_size, -1)

        if self.nn_W is None:
            query = query.view(NP, NR, -1)
            logit = masked_tensor(mask, 1)
            logit = logit.view(NP, NR, -1)
            X = X.permute(0, 2, 1)
            logit.baddbmm_(query, X, alpha=self.alpha)
            logit = logit.view(batch_size, -1)
        else:
            if self.training and self.vars_dim > 0 and memopt > 0:
                logit = checkpoint(self.atten, query, X, varfeat, mask)
            else:
                logit = self.atten(query, X, varfeat, mask)

        chosen_p = choose(logit, chosen, sample_p, clip, mode)
        return state1, state2, chosen_p

    def rnn_step(self, query, state1, state2):
        if isinstance(self.nn_rnn_cell, nn.GRUCell):
            state1 = self.nn_rnn_cell(query, state1)
        elif isinstance(self.nn_rnn_cell, nn.LSTMCell):
            state1, state2 = self.nn_rnn_cell(query, (state1, state2))
        return state1, state2

    def atten(self, query, keyvalue, varfeat, mask):
        if self.vars_dim > 0:
            varfeat = vfaddmm(varfeat, mask, self.nn_A, self.nn_B)
        return atten(query, keyvalue, varfeat, mask, self.nn_W)


def choose(logit, chosen, sample_p, clip, mode):
    mask = logit == -math.inf
    logit = torch.tanh(logit) * clip
    logit[mask] = -math.inf

    if mode == 0:
        pass
    elif mode == 1:
        chosen[:] = logit.argmax(1)
    elif mode == 2:
        p = logit.exp()
        chosen[:] = torch.multinomial(p, 1).squeeze(1)
    else:
        raise Exception()

    logp = logit.log_softmax(1)
    logp = logp.gather(1, chosen[:, None])
    logp = logp.squeeze(1)
    return logp


def atten(query, keyvalue, varfeat, mask, weight):
    batch_size = query.size(0)
    NP, NK, ND = keyvalue.size()

    query = query.view(NP, -1, 1, ND)
    varfeat = varfeat.view(NP, -1, NK, ND)
    keyvalue = keyvalue[:, None, :, :]
    keyvalue = keyvalue + varfeat + query
    keyvalue = torch.tanh(keyvalue)
    keyvalue = keyvalue.view(-1, ND)

    logit = masked_tensor(mask, 1).view(-1)
    logit.addmv_(keyvalue, weight)
    return logit.view(batch_size, -1)


def masked_tensor(mask, heads):
    size = list(mask.size())
    size.insert(0, heads)
    mask = mask[None].expand(size)
    result = mask.new_zeros(size, dtype=torch.float32)
    result[mask] = -math.inf
    return result


def vfaddmm(varfeat, mask, A, B):
    varfeat = varfeat.permute(0, 2, 1)
    return F.linear(varfeat, A.permute(1, 0), B)