HUANG1993 commited on
Commit
70a6941
1 Parent(s): c388f45

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -12
README.md CHANGED
@@ -15,9 +15,9 @@ tags:
15
 
16
  ## Overview
17
 
18
- - GreedRL is a Deep Reinforcement Learning (DRL) based solver that can solve various types of problems, such as TSP, VRPs (CVRP, VRPTW, VRPPD etc), Order Batching Problem, Knapsack Problem etc.
19
 
20
- - GreedRL achieves very high performance by running on GPU while generating high quality solutions.
21
  **1200 times faster** than [Google OR-Tools](https://developers.google.com/optimization) for large-scale (>=1000 nodes) CVRP, and the solution quality is improved by **about 3%**.
22
 
23
  ## 🏆Award
@@ -27,7 +27,7 @@ tags:
27
 
28
  ## Editions
29
 
30
- We have deliveried the following two editions of GreedRL for users.
31
 
32
  - **The Community Edition** is open source and available to [download](https://huggingface.co/Cainiao-AI/GreedRL).
33
  - **The Enterprise Edition** has a higher performance implementation than **The Community Edition** (about 50 times faster), especially when solving larg-scale problems. For more informations, please contact <a href="mailto:[email protected]">us</a>.
@@ -38,8 +38,9 @@ We have deliveried the following two editions of GreedRL for users.
38
 
39
  ## COPs Modeling examples
40
 
 
41
 
42
- ### Capacitated Vehicle Routing Problem (CVRP)
43
  <details>
44
  <summary>CVRP</summary>
45
 
@@ -94,7 +95,7 @@ class Objective:
94
 
95
  </details>
96
 
97
- ### Pickup and Delivery Problem with Time Windows (PDPTW)
98
  <details>
99
  <summary>PDPTW</summary>
100
 
@@ -175,7 +176,7 @@ class Objective:
175
  </details>
176
 
177
 
178
- ### VRP with Time Windows (VRPTW)
179
  <details>
180
  <summary>VRPTW</summary>
181
 
@@ -257,7 +258,7 @@ class Objective:
257
 
258
  </details>
259
 
260
- ### Travelling Salesman Problem (TSP)
261
  <details>
262
  <summary>TSP</summary>
263
 
@@ -306,7 +307,7 @@ class Objective:
306
 
307
  </details>
308
 
309
- ### Split Delivery Vehicle Routing Problem (SDVRP)
310
  <details>
311
  <summary>SDVRP</summary>
312
 
@@ -358,9 +359,19 @@ class Objective:
358
 
359
  </details>
360
 
361
- ### Instant Pickup and Delivery Service Problem
 
 
 
 
 
 
 
 
 
 
362
  <details>
363
- <summary>Instant Pickup and Delivery Service Problem (PDP)</summary>
364
 
365
  ```python
366
  from greedrl.feature import *
@@ -450,9 +461,9 @@ class Objective:
450
 
451
  </details>
452
 
453
- ### Order Batching Problem
454
  <details>
455
- <summary>Batching</summary>
456
 
457
  ```python
458
  from greedrl import Problem, Solver
 
15
 
16
  ## Overview
17
 
18
+ - 🤠GreedRL is a Deep Reinforcement Learning (DRL) based solver that can solve various types of problems, such as TSP, VRPs (CVRP, VRPTW, VRPPD etc), Order Batching Problem, Knapsack Problem etc.
19
 
20
+ - 🤠GreedRL achieves very high performance by running on GPU while generating high quality solutions.
21
  **1200 times faster** than [Google OR-Tools](https://developers.google.com/optimization) for large-scale (>=1000 nodes) CVRP, and the solution quality is improved by **about 3%**.
22
 
23
  ## 🏆Award
 
27
 
28
  ## Editions
29
 
30
+ We have deliveried the following two editions of 🤠GreedRL for users.
31
 
32
  - **The Community Edition** is open source and available to [download](https://huggingface.co/Cainiao-AI/GreedRL).
33
  - **The Enterprise Edition** has a higher performance implementation than **The Community Edition** (about 50 times faster), especially when solving larg-scale problems. For more informations, please contact <a href="mailto:[email protected]">us</a>.
 
38
 
39
  ## COPs Modeling examples
40
 
41
+ ### Standard problems
42
 
43
+ #### Capacitated Vehicle Routing Problem (CVRP)
44
  <details>
45
  <summary>CVRP</summary>
46
 
 
95
 
96
  </details>
97
 
98
+ #### Pickup and Delivery Problem with Time Windows (PDPTW)
99
  <details>
100
  <summary>PDPTW</summary>
101
 
 
176
  </details>
177
 
178
 
179
+ #### VRP with Time Windows (VRPTW)
180
  <details>
181
  <summary>VRPTW</summary>
182
 
 
258
 
259
  </details>
260
 
261
+ #### Travelling Salesman Problem (TSP)
262
  <details>
263
  <summary>TSP</summary>
264
 
 
307
 
308
  </details>
309
 
310
+ #### Split Delivery Vehicle Routing Problem (SDVRP)
311
  <details>
312
  <summary>SDVRP</summary>
313
 
 
359
 
360
  </details>
361
 
362
+ ### Real-world scenario problems
363
+
364
+ In addition to being able to solve standard problems, 🤠GreedRL can also model and solve real-world scenario problems, like `Instant Pickup and Delivery Service` and `Order Batching Problem`.
365
+
366
+ #### Instant Pickup and Delivery Service
367
+
368
+ > Instant Pickup and Delivery Service are widespread in order dispatching systems of the supply chain, courier delivery services and elsewhere.
369
+ >
370
+ > Orders are generated in real-time. A number of vehicles are scheduled to serve orders from pickup locations to delivery locations while respecting vehicle capacity and service time constraints. The objective is to dynamically assign each order to the most appropriate vehicle so that the overall transportation cost (e.g., overall distances) cound be minimized.
371
+
372
+
373
  <details>
374
+ <summary>Instant Pickup and Delivery Service</summary>
375
 
376
  ```python
377
  from greedrl.feature import *
 
461
 
462
  </details>
463
 
464
+ #### Order Batching Problem
465
  <details>
466
+ <summary>Order Batching Problem</summary>
467
 
468
  ```python
469
  from greedrl import Problem, Solver