upload
Browse files- .gitattributes +1 -0
- INIT.sh +23 -0
- README.md +92 -0
- TAAS_utils.py +1544 -0
- chn_2_code.pkl +3 -0
- config.json +31 -0
- configuration_TAAS.py +53 -0
- graphormer.py +393 -0
- htc_loss.py +145 -0
- htc_mask_dict_old.pkl +3 -0
- imgs/overview.png +3 -0
- modeling_TAAS.py +1034 -0
- ner_model.py +88 -0
- pytorch_model.bin +3 -0
- remap_code_2_chn.pkl +3 -0
- remap_code_2_chn_with_all_htc.pkl +3 -0
- requirements.txt +30 -0
- special_tokens_map.json +7 -0
- tokenizer_config.json +15 -0
- utils.py +166 -0
- vocab.txt +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
imgs/overview.png filter=lfs diff=lfs merge=lfs -text
|
INIT.sh
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sudo rm -f /etc/conda/condarc && sudo touch /etc/conda/condarc
|
2 |
+
conda create -n py38 python=3.8 -y
|
3 |
+
conda install -n py38 ipykernel -y
|
4 |
+
source activate py38
|
5 |
+
# local env
|
6 |
+
# conda create --prefix=conda_env/py38_env python=3.8 -y
|
7 |
+
# conda install --prefix=conda_env/py38_env ipykernel -y
|
8 |
+
# source activate conda_env/py38_env
|
9 |
+
|
10 |
+
|
11 |
+
python -m ipykernel install --user --name py38 --display-name "py38"
|
12 |
+
# pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116
|
13 |
+
pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116
|
14 |
+
# pip install matplotlib datasets pandas transformers scikit-learn scipy tensorboard tqdm numpy seaborn fairseq tensorboardX
|
15 |
+
|
16 |
+
pip install -r requirements.txt
|
17 |
+
pip install --user -U https://pai-dlc.oss-cn-zhangjiakou.aliyuncs.com/tunnel/common_io/common_io-0.4.1%2Btunnel-py2.py3-none-any.whl
|
18 |
+
pip install oss2
|
19 |
+
pip install ujson cn2an whoosh openpyxl rapidfuzz numpy pandas tqdm jieba scikit-learn seaborn
|
20 |
+
# pip install http://eas-data.oss-cn-shanghai.aliyuncs.com/sdk/allspark-0.15-py2.py3-none-any.whl
|
21 |
+
pip install http://eas-data.oss-cn-shanghai.aliyuncs.com/sdk/allspark-0.15-py2.py3-none-any.whl
|
22 |
+
# pip install "modelscope[nlp]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
|
23 |
+
# pip install --user -U https://pai-dlc.oss-cn-zhangjiakou.aliyuncs.com/tunnel/common_io/common_io-0.4.1%2Btunnel-py2.py3-none-any.whl
|
README.md
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# TAAS
|
3 |
+
|
4 |
+
## Introduction
|
5 |
+
TAAS: A Text-based Delivery Address Analysis System in Logistics
|
6 |
+
|
7 |
+
## System description
|
8 |
+
TAAS is an integrated system for text-based address analysis in logistics field. TAAS supports several address perception tasks, as well as other logistics related tasks. Our system is based on a Geography-Graph Pre-trained model in logistics, termed G2PTL, which promotes the delivery address encoding by combining the semantic learning capabilities of text pre-training with the geographical-relationship encoding abilities of graph modeling.
|
9 |
+
|
10 |
+
![overview.png](./imgs/overview.png)
|
11 |
+
|
12 |
+
## Supported Tasks
|
13 |
+
|
14 |
+
1. **Address perception tasks**
|
15 |
+
* Address Completion
|
16 |
+
* Address Standardization
|
17 |
+
* House Info Extraction
|
18 |
+
* Address Entity Tokenization
|
19 |
+
* Address embedding
|
20 |
+
2. **Logistics related tasks**
|
21 |
+
* Geo-locating From Text to Geospatial
|
22 |
+
* Pick-up Estimation Time of Arrival
|
23 |
+
* Pick-up and Delivery Route Prediction
|
24 |
+
|
25 |
+
## How To Use
|
26 |
+
|
27 |
+
Once installed, loading and using a fine-tuned model on any specific task can be done as follows:
|
28 |
+
|
29 |
+
```python
|
30 |
+
from transformers import AutoModel
|
31 |
+
model = AutoModel.from_pretrained('Cainiao-AI/TAAS')
|
32 |
+
model.eval()
|
33 |
+
address = ['北京市马驹桥镇兴贸二街幸福家园1幢5单元1009室 注:放在门口即可']
|
34 |
+
|
35 |
+
# Address completion
|
36 |
+
output = model.addr_complet(address)
|
37 |
+
print(output)
|
38 |
+
```
|
39 |
+
```python
|
40 |
+
['北京市通州区马驹桥镇兴贸二街幸福家园1幢5单元1009室 注:放在门口即可']
|
41 |
+
```
|
42 |
+
```python
|
43 |
+
# Address standardization
|
44 |
+
output = model.addr_standardize(address)
|
45 |
+
print(output)
|
46 |
+
```
|
47 |
+
```python
|
48 |
+
['北京马驹桥镇兴贸二街幸福家园1幢5单元1009室']
|
49 |
+
```
|
50 |
+
```python
|
51 |
+
# House info extraction
|
52 |
+
output = model.house_info(address)
|
53 |
+
print(output)
|
54 |
+
```
|
55 |
+
```python
|
56 |
+
[{'楼栋': '1', '单元': '5', '门牌号': '1009'}]
|
57 |
+
```
|
58 |
+
```python
|
59 |
+
# Address entity tokenization
|
60 |
+
output = model.addr_entity(address)
|
61 |
+
print(output)
|
62 |
+
```
|
63 |
+
```python
|
64 |
+
[{'省': '北京', '市': '', '区': '马驹桥', '街道/镇': '镇兴贸二街', '道路': '', '道路号': '', 'poi': '幸福家园', '楼栋号': '1', '单元号': '5', '门牌号': '1009'}]
|
65 |
+
```
|
66 |
+
```python
|
67 |
+
# Geo-locating from text to geospatial
|
68 |
+
output = model.geolocate(address)
|
69 |
+
```
|
70 |
+
```python
|
71 |
+
's2网格化结果:453cf541fcb147b437433cf3cff43f470'
|
72 |
+
```
|
73 |
+
```python
|
74 |
+
# Pick-up estimation time of arrival
|
75 |
+
output = model.pickup_ETA(eta_data)
|
76 |
+
# Users can get the address embeddings for their pick-up ETA model
|
77 |
+
```
|
78 |
+
```python
|
79 |
+
# Pick-up and Delivery Route prediction
|
80 |
+
output = model.route_predict(route_data)
|
81 |
+
# Users can get the address embeddings for their route prediction model
|
82 |
+
```
|
83 |
+
|
84 |
+
## Requirements
|
85 |
+
python>=3.8
|
86 |
+
```shell
|
87 |
+
tqdm==4.65.0
|
88 |
+
torch==1.13.1
|
89 |
+
transformers==4.27.4
|
90 |
+
datasets==2.11.0
|
91 |
+
fairseq==0.12.2
|
92 |
+
```
|
TAAS_utils.py
ADDED
@@ -0,0 +1,1544 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! python3
|
2 |
+
# -*- encoding: utf-8 -*-
|
3 |
+
|
4 |
+
from transformers.models.ernie.modeling_ernie import *
|
5 |
+
import torch.utils.checkpoint
|
6 |
+
from torch import nn
|
7 |
+
from transformers.utils import logging
|
8 |
+
import inspect
|
9 |
+
from typing import Set, Any, Callable, Dict, Iterable, List, Mapping, Optional, Tuple, Union
|
10 |
+
import re
|
11 |
+
import math
|
12 |
+
from typing import Optional, Tuple
|
13 |
+
|
14 |
+
import torch
|
15 |
+
from fairseq import utils
|
16 |
+
from fairseq.modules.fairseq_dropout import FairseqDropout
|
17 |
+
from fairseq.modules.quant_noise import quant_noise
|
18 |
+
from torch import Tensor, nn
|
19 |
+
from torch.hub import load_state_dict_from_url
|
20 |
+
import torch.distributed as dist
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
from torch.hub import load_state_dict_from_url
|
25 |
+
import torch.distributed as dist
|
26 |
+
|
27 |
+
PRETRAINED_MODEL_URLS = {
|
28 |
+
"pcqm4mv1_graphormer_base":"https://ml2md.blob.core.windows.net/graphormer-ckpts/checkpoint_best_pcqm4mv1.pt",
|
29 |
+
"pcqm4mv2_graphormer_base":"https://ml2md.blob.core.windows.net/graphormer-ckpts/checkpoint_best_pcqm4mv2.pt",
|
30 |
+
"oc20is2re_graphormer3d_base":"https://szheng.blob.core.windows.net/graphormer/modelzoo/oc20is2re/checkpoint_last_oc20_is2re.pt", # this pretrained model is temporarily unavailable
|
31 |
+
"pcqm4mv1_graphormer_base_for_molhiv":"https://ml2md.blob.core.windows.net/graphormer-ckpts/checkpoint_base_preln_pcqm4mv1_for_hiv.pt",
|
32 |
+
}
|
33 |
+
|
34 |
+
def load_pretrained_model(pretrained_model_name):
|
35 |
+
if pretrained_model_name not in PRETRAINED_MODEL_URLS:
|
36 |
+
raise ValueError("Unknown pretrained model name %s", pretrained_model_name)
|
37 |
+
if not dist.is_initialized():
|
38 |
+
return load_state_dict_from_url(PRETRAINED_MODEL_URLS[pretrained_model_name], progress=True)["model"]
|
39 |
+
else:
|
40 |
+
pretrained_model = load_state_dict_from_url(PRETRAINED_MODEL_URLS[pretrained_model_name], progress=True, file_name=f"{pretrained_model_name}_{dist.get_rank()}")["model"]
|
41 |
+
dist.barrier()
|
42 |
+
return pretrained_model
|
43 |
+
|
44 |
+
|
45 |
+
class MultiheadAttention(nn.Module):
|
46 |
+
"""Multi-headed attention.
|
47 |
+
|
48 |
+
See "Attention Is All You Need" for more details.
|
49 |
+
"""
|
50 |
+
|
51 |
+
def __init__(
|
52 |
+
self,
|
53 |
+
embed_dim,
|
54 |
+
num_heads,
|
55 |
+
kdim=None,
|
56 |
+
vdim=None,
|
57 |
+
dropout=0.0,
|
58 |
+
bias=True,
|
59 |
+
self_attention=False,
|
60 |
+
q_noise=0.0,
|
61 |
+
qn_block_size=8,
|
62 |
+
):
|
63 |
+
super().__init__()
|
64 |
+
self.embed_dim = embed_dim
|
65 |
+
self.kdim = kdim if kdim is not None else embed_dim
|
66 |
+
self.vdim = vdim if vdim is not None else embed_dim
|
67 |
+
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
68 |
+
|
69 |
+
self.num_heads = num_heads
|
70 |
+
self.dropout_module = FairseqDropout(
|
71 |
+
dropout, module_name=self.__class__.__name__
|
72 |
+
)
|
73 |
+
|
74 |
+
self.head_dim = embed_dim // num_heads
|
75 |
+
assert (
|
76 |
+
self.head_dim * num_heads == self.embed_dim
|
77 |
+
), "embed_dim must be divisible by num_heads"
|
78 |
+
self.scaling = self.head_dim ** -0.5
|
79 |
+
|
80 |
+
self.self_attention = self_attention
|
81 |
+
|
82 |
+
assert self.self_attention, "Only support self attention"
|
83 |
+
|
84 |
+
assert not self.self_attention or self.qkv_same_dim, (
|
85 |
+
"Self-attention requires query, key and " "value to be of the same size"
|
86 |
+
)
|
87 |
+
|
88 |
+
self.k_proj = quant_noise(
|
89 |
+
nn.Linear(self.kdim, embed_dim, bias=bias), q_noise, qn_block_size
|
90 |
+
)
|
91 |
+
self.v_proj = quant_noise(
|
92 |
+
nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size
|
93 |
+
)
|
94 |
+
self.q_proj = quant_noise(
|
95 |
+
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
|
96 |
+
)
|
97 |
+
|
98 |
+
self.out_proj = quant_noise(
|
99 |
+
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
|
100 |
+
)
|
101 |
+
|
102 |
+
self.reset_parameters()
|
103 |
+
|
104 |
+
self.onnx_trace = False
|
105 |
+
|
106 |
+
def prepare_for_onnx_export_(self):
|
107 |
+
raise NotImplementedError
|
108 |
+
|
109 |
+
def reset_parameters(self):
|
110 |
+
if self.qkv_same_dim:
|
111 |
+
# Empirically observed the convergence to be much better with
|
112 |
+
# the scaled initialization
|
113 |
+
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
|
114 |
+
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
|
115 |
+
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
|
116 |
+
else:
|
117 |
+
nn.init.xavier_uniform_(self.k_proj.weight)
|
118 |
+
nn.init.xavier_uniform_(self.v_proj.weight)
|
119 |
+
nn.init.xavier_uniform_(self.q_proj.weight)
|
120 |
+
|
121 |
+
nn.init.xavier_uniform_(self.out_proj.weight)
|
122 |
+
if self.out_proj.bias is not None:
|
123 |
+
nn.init.constant_(self.out_proj.bias, 0.0)
|
124 |
+
|
125 |
+
def forward(
|
126 |
+
self,
|
127 |
+
query,
|
128 |
+
key: Optional[Tensor],
|
129 |
+
value: Optional[Tensor],
|
130 |
+
attn_bias: Optional[Tensor],
|
131 |
+
key_padding_mask: Optional[Tensor] = None,
|
132 |
+
need_weights: bool = True,
|
133 |
+
attn_mask: Optional[Tensor] = None,
|
134 |
+
before_softmax: bool = False,
|
135 |
+
need_head_weights: bool = False,
|
136 |
+
) -> Tuple[Tensor, Optional[Tensor]]:
|
137 |
+
"""Input shape: Time x Batch x Channel
|
138 |
+
|
139 |
+
Args:
|
140 |
+
key_padding_mask (ByteTensor, optional): mask to exclude
|
141 |
+
keys that are pads, of shape `(batch, src_len)`, where
|
142 |
+
padding elements are indicated by 1s.
|
143 |
+
need_weights (bool, optional): return the attention weights,
|
144 |
+
averaged over heads (default: False).
|
145 |
+
attn_mask (ByteTensor, optional): typically used to
|
146 |
+
implement causal attention, where the mask prevents the
|
147 |
+
attention from looking forward in time (default: None).
|
148 |
+
before_softmax (bool, optional): return the raw attention
|
149 |
+
weights and values before the attention softmax.
|
150 |
+
need_head_weights (bool, optional): return the attention
|
151 |
+
weights for each head. Implies *need_weights*. Default:
|
152 |
+
return the average attention weights over all heads.
|
153 |
+
"""
|
154 |
+
if need_head_weights:
|
155 |
+
need_weights = True
|
156 |
+
|
157 |
+
tgt_len, bsz, embed_dim = query.size()
|
158 |
+
src_len = tgt_len
|
159 |
+
assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}"
|
160 |
+
assert list(query.size()) == [tgt_len, bsz, embed_dim]
|
161 |
+
if key is not None:
|
162 |
+
src_len, key_bsz, _ = key.size()
|
163 |
+
if not torch.jit.is_scripting():
|
164 |
+
assert key_bsz == bsz
|
165 |
+
assert value is not None
|
166 |
+
assert src_len, bsz == value.shape[:2]
|
167 |
+
|
168 |
+
q = self.q_proj(query)
|
169 |
+
k = self.k_proj(query)
|
170 |
+
v = self.v_proj(query)
|
171 |
+
q *= self.scaling
|
172 |
+
|
173 |
+
q = (
|
174 |
+
q.contiguous()
|
175 |
+
.view(tgt_len, bsz * self.num_heads, self.head_dim)
|
176 |
+
.transpose(0, 1)
|
177 |
+
)
|
178 |
+
if k is not None:
|
179 |
+
k = (
|
180 |
+
k.contiguous()
|
181 |
+
.view(-1, bsz * self.num_heads, self.head_dim)
|
182 |
+
.transpose(0, 1)
|
183 |
+
)
|
184 |
+
if v is not None:
|
185 |
+
v = (
|
186 |
+
v.contiguous()
|
187 |
+
.view(-1, bsz * self.num_heads, self.head_dim)
|
188 |
+
.transpose(0, 1)
|
189 |
+
)
|
190 |
+
|
191 |
+
assert k is not None
|
192 |
+
assert k.size(1) == src_len
|
193 |
+
|
194 |
+
# This is part of a workaround to get around fork/join parallelism
|
195 |
+
# not supporting Optional types.
|
196 |
+
if key_padding_mask is not None and key_padding_mask.dim() == 0:
|
197 |
+
key_padding_mask = None
|
198 |
+
|
199 |
+
if key_padding_mask is not None:
|
200 |
+
assert key_padding_mask.size(0) == bsz
|
201 |
+
assert key_padding_mask.size(1) == src_len
|
202 |
+
attn_weights = torch.bmm(q, k.transpose(1, 2))
|
203 |
+
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
|
204 |
+
|
205 |
+
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
|
206 |
+
|
207 |
+
if attn_bias is not None:
|
208 |
+
attn_weights += attn_bias.view(bsz * self.num_heads, tgt_len, src_len)
|
209 |
+
|
210 |
+
if attn_mask is not None:
|
211 |
+
attn_mask = attn_mask.unsqueeze(0)
|
212 |
+
attn_weights += attn_mask
|
213 |
+
|
214 |
+
if key_padding_mask is not None:
|
215 |
+
# don't attend to padding symbols
|
216 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
217 |
+
attn_weights = attn_weights.masked_fill(
|
218 |
+
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
|
219 |
+
float("-inf"),
|
220 |
+
)
|
221 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
222 |
+
|
223 |
+
if before_softmax:
|
224 |
+
return attn_weights, v
|
225 |
+
|
226 |
+
attn_weights_float = utils.softmax(
|
227 |
+
attn_weights, dim=-1, onnx_trace=self.onnx_trace
|
228 |
+
)
|
229 |
+
attn_weights = attn_weights_float.type_as(attn_weights)
|
230 |
+
attn_probs = self.dropout_module(attn_weights)
|
231 |
+
|
232 |
+
assert v is not None
|
233 |
+
attn = torch.bmm(attn_probs, v)
|
234 |
+
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
|
235 |
+
|
236 |
+
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
237 |
+
attn = self.out_proj(attn)
|
238 |
+
|
239 |
+
attn_weights: Optional[Tensor] = None
|
240 |
+
if need_weights:
|
241 |
+
attn_weights = attn_weights_float.view(
|
242 |
+
bsz, self.num_heads, tgt_len, src_len
|
243 |
+
).transpose(1, 0)
|
244 |
+
if not need_head_weights:
|
245 |
+
# average attention weights over heads
|
246 |
+
attn_weights = attn_weights.mean(dim=0)
|
247 |
+
|
248 |
+
return attn, attn_weights
|
249 |
+
|
250 |
+
def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int):
|
251 |
+
return attn_weights
|
252 |
+
|
253 |
+
def upgrade_state_dict_named(self, state_dict, name):
|
254 |
+
prefix = name + "." if name != "" else ""
|
255 |
+
items_to_add = {}
|
256 |
+
keys_to_remove = []
|
257 |
+
for k in state_dict.keys():
|
258 |
+
if k.endswith(prefix + "in_proj_weight"):
|
259 |
+
# in_proj_weight used to be q + k + v with same dimensions
|
260 |
+
dim = int(state_dict[k].shape[0] / 3)
|
261 |
+
items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim]
|
262 |
+
items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim]
|
263 |
+
items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :]
|
264 |
+
|
265 |
+
keys_to_remove.append(k)
|
266 |
+
|
267 |
+
k_bias = prefix + "in_proj_bias"
|
268 |
+
if k_bias in state_dict.keys():
|
269 |
+
dim = int(state_dict[k].shape[0] / 3)
|
270 |
+
items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim]
|
271 |
+
items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][
|
272 |
+
dim : 2 * dim
|
273 |
+
]
|
274 |
+
items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :]
|
275 |
+
|
276 |
+
keys_to_remove.append(prefix + "in_proj_bias")
|
277 |
+
|
278 |
+
for k in keys_to_remove:
|
279 |
+
del state_dict[k]
|
280 |
+
|
281 |
+
for key, value in items_to_add.items():
|
282 |
+
state_dict[key] = value
|
283 |
+
|
284 |
+
|
285 |
+
def init_graphormer_params(module):
|
286 |
+
"""
|
287 |
+
Initialize the weights specific to the Graphormer Model.
|
288 |
+
"""
|
289 |
+
|
290 |
+
def normal_(data):
|
291 |
+
# with FSDP, module params will be on CUDA, so we cast them back to CPU
|
292 |
+
# so that the RNG is consistent with and without FSDP
|
293 |
+
data.copy_(data.cpu().normal_(mean=0.0, std=0.02).to(data.device))
|
294 |
+
|
295 |
+
if isinstance(module, nn.Linear):
|
296 |
+
normal_(module.weight.data)
|
297 |
+
if module.bias is not None:
|
298 |
+
module.bias.data.zero_()
|
299 |
+
if isinstance(module, nn.Embedding):
|
300 |
+
normal_(module.weight.data)
|
301 |
+
if module.padding_idx is not None:
|
302 |
+
module.weight.data[module.padding_idx].zero_()
|
303 |
+
if isinstance(module, MultiheadAttention):
|
304 |
+
normal_(module.q_proj.weight.data)
|
305 |
+
normal_(module.k_proj.weight.data)
|
306 |
+
normal_(module.v_proj.weight.data)
|
307 |
+
|
308 |
+
|
309 |
+
|
310 |
+
|
311 |
+
def add_start_docstrings(*docstr):
|
312 |
+
def docstring_decorator(fn):
|
313 |
+
fn.__doc__ = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "")
|
314 |
+
return fn
|
315 |
+
|
316 |
+
return docstring_decorator
|
317 |
+
|
318 |
+
|
319 |
+
def add_start_docstrings_to_model_forward(*docstr):
|
320 |
+
def docstring_decorator(fn):
|
321 |
+
docstring = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "")
|
322 |
+
class_name = f"[`{fn.__qualname__.split('.')[0]}`]"
|
323 |
+
intro = f" The {class_name} forward method, overrides the `__call__` special method."
|
324 |
+
note = r"""
|
325 |
+
|
326 |
+
<Tip>
|
327 |
+
|
328 |
+
Although the recipe for forward pass needs to be defined within this function, one should call the [`Module`]
|
329 |
+
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
|
330 |
+
the latter silently ignores them.
|
331 |
+
|
332 |
+
</Tip>
|
333 |
+
"""
|
334 |
+
|
335 |
+
fn.__doc__ = intro + note + docstring
|
336 |
+
return fn
|
337 |
+
|
338 |
+
return docstring_decorator
|
339 |
+
|
340 |
+
|
341 |
+
def add_end_docstrings(*docstr):
|
342 |
+
def docstring_decorator(fn):
|
343 |
+
fn.__doc__ = (fn.__doc__ if fn.__doc__ is not None else "") + "".join(docstr)
|
344 |
+
return fn
|
345 |
+
|
346 |
+
return docstring_decorator
|
347 |
+
|
348 |
+
|
349 |
+
PT_RETURN_INTRODUCTION = r"""
|
350 |
+
Returns:
|
351 |
+
[`{full_output_type}`] or `tuple(torch.FloatTensor)`: A [`{full_output_type}`] or a tuple of
|
352 |
+
`torch.FloatTensor` (if `return_dict=False` is passed or when `config.return_dict=False`) comprising various
|
353 |
+
elements depending on the configuration ([`{config_class}`]) and inputs.
|
354 |
+
|
355 |
+
"""
|
356 |
+
|
357 |
+
TF_RETURN_INTRODUCTION = r"""
|
358 |
+
Returns:
|
359 |
+
[`{full_output_type}`] or `tuple(tf.Tensor)`: A [`{full_output_type}`] or a tuple of `tf.Tensor` (if
|
360 |
+
`return_dict=False` is passed or when `config.return_dict=False`) comprising various elements depending on the
|
361 |
+
configuration ([`{config_class}`]) and inputs.
|
362 |
+
|
363 |
+
"""
|
364 |
+
|
365 |
+
|
366 |
+
def _get_indent(t):
|
367 |
+
"""Returns the indentation in the first line of t"""
|
368 |
+
search = re.search(r"^(\s*)\S", t)
|
369 |
+
return "" if search is None else search.groups()[0]
|
370 |
+
|
371 |
+
|
372 |
+
def _convert_output_args_doc(output_args_doc):
|
373 |
+
"""Convert output_args_doc to display properly."""
|
374 |
+
# Split output_arg_doc in blocks argument/description
|
375 |
+
indent = _get_indent(output_args_doc)
|
376 |
+
blocks = []
|
377 |
+
current_block = ""
|
378 |
+
for line in output_args_doc.split("\n"):
|
379 |
+
# If the indent is the same as the beginning, the line is the name of new arg.
|
380 |
+
if _get_indent(line) == indent:
|
381 |
+
if len(current_block) > 0:
|
382 |
+
blocks.append(current_block[:-1])
|
383 |
+
current_block = f"{line}\n"
|
384 |
+
else:
|
385 |
+
# Otherwise it's part of the description of the current arg.
|
386 |
+
# We need to remove 2 spaces to the indentation.
|
387 |
+
current_block += f"{line[2:]}\n"
|
388 |
+
blocks.append(current_block[:-1])
|
389 |
+
|
390 |
+
# Format each block for proper rendering
|
391 |
+
for i in range(len(blocks)):
|
392 |
+
blocks[i] = re.sub(r"^(\s+)(\S+)(\s+)", r"\1- **\2**\3", blocks[i])
|
393 |
+
blocks[i] = re.sub(r":\s*\n\s*(\S)", r" -- \1", blocks[i])
|
394 |
+
|
395 |
+
return "\n".join(blocks)
|
396 |
+
|
397 |
+
|
398 |
+
def _prepare_output_docstrings(output_type, config_class, min_indent=None):
|
399 |
+
"""
|
400 |
+
Prepares the return part of the docstring using `output_type`.
|
401 |
+
"""
|
402 |
+
output_docstring = output_type.__doc__
|
403 |
+
|
404 |
+
# Remove the head of the docstring to keep the list of args only
|
405 |
+
lines = output_docstring.split("\n")
|
406 |
+
i = 0
|
407 |
+
while i < len(lines) and re.search(r"^\s*(Args|Parameters):\s*$", lines[i]) is None:
|
408 |
+
i += 1
|
409 |
+
if i < len(lines):
|
410 |
+
params_docstring = "\n".join(lines[(i + 1):])
|
411 |
+
params_docstring = _convert_output_args_doc(params_docstring)
|
412 |
+
|
413 |
+
# Add the return introduction
|
414 |
+
full_output_type = f"{output_type.__module__}.{output_type.__name__}"
|
415 |
+
intro = TF_RETURN_INTRODUCTION if output_type.__name__.startswith("TF") else PT_RETURN_INTRODUCTION
|
416 |
+
intro = intro.format(full_output_type=full_output_type, config_class=config_class)
|
417 |
+
result = intro + params_docstring
|
418 |
+
|
419 |
+
# Apply minimum indent if necessary
|
420 |
+
if min_indent is not None:
|
421 |
+
lines = result.split("\n")
|
422 |
+
# Find the indent of the first nonempty line
|
423 |
+
i = 0
|
424 |
+
while len(lines[i]) == 0:
|
425 |
+
i += 1
|
426 |
+
indent = len(_get_indent(lines[i]))
|
427 |
+
# If too small, add indentation to all nonempty lines
|
428 |
+
if indent < min_indent:
|
429 |
+
to_add = " " * (min_indent - indent)
|
430 |
+
lines = [(f"{to_add}{line}" if len(line) > 0 else line) for line in lines]
|
431 |
+
result = "\n".join(lines)
|
432 |
+
|
433 |
+
return result
|
434 |
+
|
435 |
+
|
436 |
+
PT_TOKEN_CLASSIFICATION_SAMPLE = r"""
|
437 |
+
Example:
|
438 |
+
|
439 |
+
```python
|
440 |
+
>>> from transformers import {processor_class}, {model_class}
|
441 |
+
>>> import torch
|
442 |
+
|
443 |
+
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
|
444 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
445 |
+
|
446 |
+
>>> inputs = tokenizer(
|
447 |
+
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
|
448 |
+
... )
|
449 |
+
|
450 |
+
>>> with torch.no_grad():
|
451 |
+
... logits = model(**inputs).logits
|
452 |
+
|
453 |
+
>>> predicted_token_class_ids = logits.argmax(-1)
|
454 |
+
|
455 |
+
>>> # Note that tokens are classified rather then input words which means that
|
456 |
+
>>> # there might be more predicted token classes than words.
|
457 |
+
>>> # Multiple token classes might account for the same word
|
458 |
+
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
|
459 |
+
>>> predicted_tokens_classes
|
460 |
+
{expected_output}
|
461 |
+
```
|
462 |
+
|
463 |
+
```python
|
464 |
+
>>> labels = predicted_token_class_ids
|
465 |
+
>>> loss = model(**inputs, labels=labels).loss
|
466 |
+
>>> round(loss.item(), 2)
|
467 |
+
{expected_loss}
|
468 |
+
```
|
469 |
+
"""
|
470 |
+
|
471 |
+
PT_QUESTION_ANSWERING_SAMPLE = r"""
|
472 |
+
Example:
|
473 |
+
|
474 |
+
```python
|
475 |
+
>>> from transformers import {processor_class}, {model_class}
|
476 |
+
>>> import torch
|
477 |
+
|
478 |
+
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
|
479 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
480 |
+
|
481 |
+
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
|
482 |
+
|
483 |
+
>>> inputs = tokenizer(question, text, return_tensors="pt")
|
484 |
+
>>> with torch.no_grad():
|
485 |
+
... outputs = model(**inputs)
|
486 |
+
|
487 |
+
>>> answer_start_index = outputs.start_logits.argmax()
|
488 |
+
>>> answer_end_index = outputs.end_logits.argmax()
|
489 |
+
|
490 |
+
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
|
491 |
+
>>> tokenizer.decode(predict_answer_tokens)
|
492 |
+
{expected_output}
|
493 |
+
```
|
494 |
+
|
495 |
+
```python
|
496 |
+
>>> # target is "nice puppet"
|
497 |
+
>>> target_start_index = torch.tensor([{qa_target_start_index}])
|
498 |
+
>>> target_end_index = torch.tensor([{qa_target_end_index}])
|
499 |
+
|
500 |
+
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
|
501 |
+
>>> loss = outputs.loss
|
502 |
+
>>> round(loss.item(), 2)
|
503 |
+
{expected_loss}
|
504 |
+
```
|
505 |
+
"""
|
506 |
+
|
507 |
+
PT_SEQUENCE_CLASSIFICATION_SAMPLE = r"""
|
508 |
+
Example of single-label classification:
|
509 |
+
|
510 |
+
```python
|
511 |
+
>>> import torch
|
512 |
+
>>> from transformers import {processor_class}, {model_class}
|
513 |
+
|
514 |
+
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
|
515 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
516 |
+
|
517 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
518 |
+
|
519 |
+
>>> with torch.no_grad():
|
520 |
+
... logits = model(**inputs).logits
|
521 |
+
|
522 |
+
>>> predicted_class_id = logits.argmax().item()
|
523 |
+
>>> model.config.id2label[predicted_class_id]
|
524 |
+
{expected_output}
|
525 |
+
```
|
526 |
+
|
527 |
+
```python
|
528 |
+
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
|
529 |
+
>>> num_labels = len(model.config.id2label)
|
530 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}", num_labels=num_labels)
|
531 |
+
|
532 |
+
>>> labels = torch.tensor([1])
|
533 |
+
>>> loss = model(**inputs, labels=labels).loss
|
534 |
+
>>> round(loss.item(), 2)
|
535 |
+
{expected_loss}
|
536 |
+
```
|
537 |
+
|
538 |
+
Example of multi-label classification:
|
539 |
+
|
540 |
+
```python
|
541 |
+
>>> import torch
|
542 |
+
>>> from transformers import {processor_class}, {model_class}
|
543 |
+
|
544 |
+
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
|
545 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}", problem_type="multi_label_classification")
|
546 |
+
|
547 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
548 |
+
|
549 |
+
>>> with torch.no_grad():
|
550 |
+
... logits = model(**inputs).logits
|
551 |
+
|
552 |
+
>>> predicted_class_id = logits.argmax().item()
|
553 |
+
>>> model.config.id2label[predicted_class_id]
|
554 |
+
{expected_output}
|
555 |
+
```
|
556 |
+
|
557 |
+
```python
|
558 |
+
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
|
559 |
+
>>> num_labels = len(model.config.id2label)
|
560 |
+
>>> model = {model_class}.from_pretrained(
|
561 |
+
... "{checkpoint}", num_labels=num_labels, problem_type="multi_label_classification"
|
562 |
+
... )
|
563 |
+
|
564 |
+
>>> labels = torch.nn.functional.one_hot(torch.tensor([predicted_class_id]), num_classes=num_labels).to(
|
565 |
+
... torch.float
|
566 |
+
... )
|
567 |
+
>>> loss = model(**inputs, labels=labels).loss
|
568 |
+
>>> loss.backward() # doctest: +IGNORE_RESULT
|
569 |
+
```
|
570 |
+
"""
|
571 |
+
|
572 |
+
PT_MASKED_LM_SAMPLE = r"""
|
573 |
+
Example:
|
574 |
+
|
575 |
+
```python
|
576 |
+
>>> from transformers import {processor_class}, {model_class}
|
577 |
+
>>> import torch
|
578 |
+
|
579 |
+
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
|
580 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
581 |
+
|
582 |
+
>>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="pt")
|
583 |
+
|
584 |
+
>>> with torch.no_grad():
|
585 |
+
... logits = model(**inputs).logits
|
586 |
+
|
587 |
+
>>> # retrieve index of {mask}
|
588 |
+
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
|
589 |
+
|
590 |
+
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
|
591 |
+
>>> tokenizer.decode(predicted_token_id)
|
592 |
+
{expected_output}
|
593 |
+
```
|
594 |
+
|
595 |
+
```python
|
596 |
+
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
|
597 |
+
>>> # mask labels of non-{mask} tokens
|
598 |
+
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
|
599 |
+
|
600 |
+
>>> outputs = model(**inputs, labels=labels)
|
601 |
+
>>> round(outputs.loss.item(), 2)
|
602 |
+
{expected_loss}
|
603 |
+
```
|
604 |
+
"""
|
605 |
+
|
606 |
+
PT_BASE_MODEL_SAMPLE = r"""
|
607 |
+
Example:
|
608 |
+
|
609 |
+
```python
|
610 |
+
>>> from transformers import {processor_class}, {model_class}
|
611 |
+
>>> import torch
|
612 |
+
|
613 |
+
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
|
614 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
615 |
+
|
616 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
617 |
+
>>> outputs = model(**inputs)
|
618 |
+
|
619 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
620 |
+
```
|
621 |
+
"""
|
622 |
+
|
623 |
+
PT_MULTIPLE_CHOICE_SAMPLE = r"""
|
624 |
+
Example:
|
625 |
+
|
626 |
+
```python
|
627 |
+
>>> from transformers import {processor_class}, {model_class}
|
628 |
+
>>> import torch
|
629 |
+
|
630 |
+
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
|
631 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
632 |
+
|
633 |
+
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
634 |
+
>>> choice0 = "It is eaten with a fork and a knife."
|
635 |
+
>>> choice1 = "It is eaten while held in the hand."
|
636 |
+
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
|
637 |
+
|
638 |
+
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
|
639 |
+
>>> outputs = model(**{{k: v.unsqueeze(0) for k, v in encoding.items()}}, labels=labels) # batch size is 1
|
640 |
+
|
641 |
+
>>> # the linear classifier still needs to be trained
|
642 |
+
>>> loss = outputs.loss
|
643 |
+
>>> logits = outputs.logits
|
644 |
+
```
|
645 |
+
"""
|
646 |
+
|
647 |
+
PT_CAUSAL_LM_SAMPLE = r"""
|
648 |
+
Example:
|
649 |
+
|
650 |
+
```python
|
651 |
+
>>> import torch
|
652 |
+
>>> from transformers import {processor_class}, {model_class}
|
653 |
+
|
654 |
+
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
|
655 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
656 |
+
|
657 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
658 |
+
>>> outputs = model(**inputs, labels=inputs["input_ids"])
|
659 |
+
>>> loss = outputs.loss
|
660 |
+
>>> logits = outputs.logits
|
661 |
+
```
|
662 |
+
"""
|
663 |
+
|
664 |
+
PT_SPEECH_BASE_MODEL_SAMPLE = r"""
|
665 |
+
Example:
|
666 |
+
|
667 |
+
```python
|
668 |
+
>>> from transformers import {processor_class}, {model_class}
|
669 |
+
>>> import torch
|
670 |
+
>>> from datasets import load_dataset
|
671 |
+
|
672 |
+
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
|
673 |
+
>>> dataset = dataset.sort("id")
|
674 |
+
>>> sampling_rate = dataset.features["audio"].sampling_rate
|
675 |
+
|
676 |
+
>>> processor = {processor_class}.from_pretrained("{checkpoint}")
|
677 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
678 |
+
|
679 |
+
>>> # audio file is decoded on the fly
|
680 |
+
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
|
681 |
+
>>> with torch.no_grad():
|
682 |
+
... outputs = model(**inputs)
|
683 |
+
|
684 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
685 |
+
>>> list(last_hidden_states.shape)
|
686 |
+
{expected_output}
|
687 |
+
```
|
688 |
+
"""
|
689 |
+
|
690 |
+
PT_SPEECH_CTC_SAMPLE = r"""
|
691 |
+
Example:
|
692 |
+
|
693 |
+
```python
|
694 |
+
>>> from transformers import {processor_class}, {model_class}
|
695 |
+
>>> from datasets import load_dataset
|
696 |
+
>>> import torch
|
697 |
+
|
698 |
+
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
|
699 |
+
>>> dataset = dataset.sort("id")
|
700 |
+
>>> sampling_rate = dataset.features["audio"].sampling_rate
|
701 |
+
|
702 |
+
>>> processor = {processor_class}.from_pretrained("{checkpoint}")
|
703 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
704 |
+
|
705 |
+
>>> # audio file is decoded on the fly
|
706 |
+
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
|
707 |
+
>>> with torch.no_grad():
|
708 |
+
... logits = model(**inputs).logits
|
709 |
+
>>> predicted_ids = torch.argmax(logits, dim=-1)
|
710 |
+
|
711 |
+
>>> # transcribe speech
|
712 |
+
>>> transcription = processor.batch_decode(predicted_ids)
|
713 |
+
>>> transcription[0]
|
714 |
+
{expected_output}
|
715 |
+
```
|
716 |
+
|
717 |
+
```python
|
718 |
+
>>> inputs["labels"] = processor(text=dataset[0]["text"], return_tensors="pt").input_ids
|
719 |
+
|
720 |
+
>>> # compute loss
|
721 |
+
>>> loss = model(**inputs).loss
|
722 |
+
>>> round(loss.item(), 2)
|
723 |
+
{expected_loss}
|
724 |
+
```
|
725 |
+
"""
|
726 |
+
|
727 |
+
PT_SPEECH_SEQ_CLASS_SAMPLE = r"""
|
728 |
+
Example:
|
729 |
+
|
730 |
+
```python
|
731 |
+
>>> from transformers import {processor_class}, {model_class}
|
732 |
+
>>> from datasets import load_dataset
|
733 |
+
>>> import torch
|
734 |
+
|
735 |
+
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
|
736 |
+
>>> dataset = dataset.sort("id")
|
737 |
+
>>> sampling_rate = dataset.features["audio"].sampling_rate
|
738 |
+
|
739 |
+
>>> feature_extractor = {processor_class}.from_pretrained("{checkpoint}")
|
740 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
741 |
+
|
742 |
+
>>> # audio file is decoded on the fly
|
743 |
+
>>> inputs = feature_extractor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
|
744 |
+
|
745 |
+
>>> with torch.no_grad():
|
746 |
+
... logits = model(**inputs).logits
|
747 |
+
|
748 |
+
>>> predicted_class_ids = torch.argmax(logits, dim=-1).item()
|
749 |
+
>>> predicted_label = model.config.id2label[predicted_class_ids]
|
750 |
+
>>> predicted_label
|
751 |
+
{expected_output}
|
752 |
+
```
|
753 |
+
|
754 |
+
```python
|
755 |
+
>>> # compute loss - target_label is e.g. "down"
|
756 |
+
>>> target_label = model.config.id2label[0]
|
757 |
+
>>> inputs["labels"] = torch.tensor([model.config.label2id[target_label]])
|
758 |
+
>>> loss = model(**inputs).loss
|
759 |
+
>>> round(loss.item(), 2)
|
760 |
+
{expected_loss}
|
761 |
+
```
|
762 |
+
"""
|
763 |
+
|
764 |
+
PT_SPEECH_FRAME_CLASS_SAMPLE = r"""
|
765 |
+
Example:
|
766 |
+
|
767 |
+
```python
|
768 |
+
>>> from transformers import {processor_class}, {model_class}
|
769 |
+
>>> from datasets import load_dataset
|
770 |
+
>>> import torch
|
771 |
+
|
772 |
+
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
|
773 |
+
>>> dataset = dataset.sort("id")
|
774 |
+
>>> sampling_rate = dataset.features["audio"].sampling_rate
|
775 |
+
|
776 |
+
>>> feature_extractor = {processor_class}.from_pretrained("{checkpoint}")
|
777 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
778 |
+
|
779 |
+
>>> # audio file is decoded on the fly
|
780 |
+
>>> inputs = feature_extractor(dataset[0]["audio"]["array"], return_tensors="pt", sampling_rate=sampling_rate)
|
781 |
+
>>> with torch.no_grad():
|
782 |
+
... logits = model(**inputs).logits
|
783 |
+
|
784 |
+
>>> probabilities = torch.sigmoid(logits[0])
|
785 |
+
>>> # labels is a one-hot array of shape (num_frames, num_speakers)
|
786 |
+
>>> labels = (probabilities > 0.5).long()
|
787 |
+
>>> labels[0].tolist()
|
788 |
+
{expected_output}
|
789 |
+
```
|
790 |
+
"""
|
791 |
+
|
792 |
+
PT_SPEECH_XVECTOR_SAMPLE = r"""
|
793 |
+
Example:
|
794 |
+
|
795 |
+
```python
|
796 |
+
>>> from transformers import {processor_class}, {model_class}
|
797 |
+
>>> from datasets import load_dataset
|
798 |
+
>>> import torch
|
799 |
+
|
800 |
+
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
|
801 |
+
>>> dataset = dataset.sort("id")
|
802 |
+
>>> sampling_rate = dataset.features["audio"].sampling_rate
|
803 |
+
|
804 |
+
>>> feature_extractor = {processor_class}.from_pretrained("{checkpoint}")
|
805 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
806 |
+
|
807 |
+
>>> # audio file is decoded on the fly
|
808 |
+
>>> inputs = feature_extractor(
|
809 |
+
... [d["array"] for d in dataset[:2]["audio"]], sampling_rate=sampling_rate, return_tensors="pt", padding=True
|
810 |
+
... )
|
811 |
+
>>> with torch.no_grad():
|
812 |
+
... embeddings = model(**inputs).embeddings
|
813 |
+
|
814 |
+
>>> embeddings = torch.nn.functional.normalize(embeddings, dim=-1).cpu()
|
815 |
+
|
816 |
+
>>> # the resulting embeddings can be used for cosine similarity-based retrieval
|
817 |
+
>>> cosine_sim = torch.nn.CosineSimilarity(dim=-1)
|
818 |
+
>>> similarity = cosine_sim(embeddings[0], embeddings[1])
|
819 |
+
>>> threshold = 0.7 # the optimal threshold is dataset-dependent
|
820 |
+
>>> if similarity < threshold:
|
821 |
+
... print("Speakers are not the same!")
|
822 |
+
>>> round(similarity.item(), 2)
|
823 |
+
{expected_output}
|
824 |
+
```
|
825 |
+
"""
|
826 |
+
|
827 |
+
PT_VISION_BASE_MODEL_SAMPLE = r"""
|
828 |
+
Example:
|
829 |
+
|
830 |
+
```python
|
831 |
+
>>> from transformers import {processor_class}, {model_class}
|
832 |
+
>>> import torch
|
833 |
+
>>> from datasets import load_dataset
|
834 |
+
|
835 |
+
>>> dataset = load_dataset("huggingface/cats-image")
|
836 |
+
>>> image = dataset["test"]["image"][0]
|
837 |
+
|
838 |
+
>>> feature_extractor = {processor_class}.from_pretrained("{checkpoint}")
|
839 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
840 |
+
|
841 |
+
>>> inputs = feature_extractor(image, return_tensors="pt")
|
842 |
+
|
843 |
+
>>> with torch.no_grad():
|
844 |
+
... outputs = model(**inputs)
|
845 |
+
|
846 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
847 |
+
>>> list(last_hidden_states.shape)
|
848 |
+
{expected_output}
|
849 |
+
```
|
850 |
+
"""
|
851 |
+
|
852 |
+
PT_VISION_SEQ_CLASS_SAMPLE = r"""
|
853 |
+
Example:
|
854 |
+
|
855 |
+
```python
|
856 |
+
>>> from transformers import {processor_class}, {model_class}
|
857 |
+
>>> import torch
|
858 |
+
>>> from datasets import load_dataset
|
859 |
+
|
860 |
+
>>> dataset = load_dataset("huggingface/cats-image")
|
861 |
+
>>> image = dataset["test"]["image"][0]
|
862 |
+
|
863 |
+
>>> feature_extractor = {processor_class}.from_pretrained("{checkpoint}")
|
864 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
865 |
+
|
866 |
+
>>> inputs = feature_extractor(image, return_tensors="pt")
|
867 |
+
|
868 |
+
>>> with torch.no_grad():
|
869 |
+
... logits = model(**inputs).logits
|
870 |
+
|
871 |
+
>>> # model predicts one of the 1000 ImageNet classes
|
872 |
+
>>> predicted_label = logits.argmax(-1).item()
|
873 |
+
>>> print(model.config.id2label[predicted_label])
|
874 |
+
{expected_output}
|
875 |
+
```
|
876 |
+
"""
|
877 |
+
|
878 |
+
PT_SAMPLE_DOCSTRINGS = {
|
879 |
+
"SequenceClassification": PT_SEQUENCE_CLASSIFICATION_SAMPLE,
|
880 |
+
"QuestionAnswering": PT_QUESTION_ANSWERING_SAMPLE,
|
881 |
+
"TokenClassification": PT_TOKEN_CLASSIFICATION_SAMPLE,
|
882 |
+
"MultipleChoice": PT_MULTIPLE_CHOICE_SAMPLE,
|
883 |
+
"MaskedLM": PT_MASKED_LM_SAMPLE,
|
884 |
+
"LMHead": PT_CAUSAL_LM_SAMPLE,
|
885 |
+
"BaseModel": PT_BASE_MODEL_SAMPLE,
|
886 |
+
"SpeechBaseModel": PT_SPEECH_BASE_MODEL_SAMPLE,
|
887 |
+
"CTC": PT_SPEECH_CTC_SAMPLE,
|
888 |
+
"AudioClassification": PT_SPEECH_SEQ_CLASS_SAMPLE,
|
889 |
+
"AudioFrameClassification": PT_SPEECH_FRAME_CLASS_SAMPLE,
|
890 |
+
"AudioXVector": PT_SPEECH_XVECTOR_SAMPLE,
|
891 |
+
"VisionBaseModel": PT_VISION_BASE_MODEL_SAMPLE,
|
892 |
+
"ImageClassification": PT_VISION_SEQ_CLASS_SAMPLE,
|
893 |
+
}
|
894 |
+
|
895 |
+
TF_TOKEN_CLASSIFICATION_SAMPLE = r"""
|
896 |
+
Example:
|
897 |
+
|
898 |
+
```python
|
899 |
+
>>> from transformers import {processor_class}, {model_class}
|
900 |
+
>>> import tensorflow as tf
|
901 |
+
|
902 |
+
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
|
903 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
904 |
+
|
905 |
+
>>> inputs = tokenizer(
|
906 |
+
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
|
907 |
+
... )
|
908 |
+
|
909 |
+
>>> logits = model(**inputs).logits
|
910 |
+
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)
|
911 |
+
|
912 |
+
>>> # Note that tokens are classified rather then input words which means that
|
913 |
+
>>> # there might be more predicted token classes than words.
|
914 |
+
>>> # Multiple token classes might account for the same word
|
915 |
+
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
|
916 |
+
>>> predicted_tokens_classes
|
917 |
+
{expected_output}
|
918 |
+
```
|
919 |
+
|
920 |
+
```python
|
921 |
+
>>> labels = predicted_token_class_ids
|
922 |
+
>>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss)
|
923 |
+
>>> round(float(loss), 2)
|
924 |
+
{expected_loss}
|
925 |
+
```
|
926 |
+
"""
|
927 |
+
|
928 |
+
TF_QUESTION_ANSWERING_SAMPLE = r"""
|
929 |
+
Example:
|
930 |
+
|
931 |
+
```python
|
932 |
+
>>> from transformers import {processor_class}, {model_class}
|
933 |
+
>>> import tensorflow as tf
|
934 |
+
|
935 |
+
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
|
936 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
937 |
+
|
938 |
+
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
|
939 |
+
|
940 |
+
>>> inputs = tokenizer(question, text, return_tensors="tf")
|
941 |
+
>>> outputs = model(**inputs)
|
942 |
+
|
943 |
+
>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
|
944 |
+
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])
|
945 |
+
|
946 |
+
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
|
947 |
+
>>> tokenizer.decode(predict_answer_tokens)
|
948 |
+
{expected_output}
|
949 |
+
```
|
950 |
+
|
951 |
+
```python
|
952 |
+
>>> # target is "nice puppet"
|
953 |
+
>>> target_start_index = tf.constant([{qa_target_start_index}])
|
954 |
+
>>> target_end_index = tf.constant([{qa_target_end_index}])
|
955 |
+
|
956 |
+
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
|
957 |
+
>>> loss = tf.math.reduce_mean(outputs.loss)
|
958 |
+
>>> round(float(loss), 2)
|
959 |
+
{expected_loss}
|
960 |
+
```
|
961 |
+
"""
|
962 |
+
|
963 |
+
TF_SEQUENCE_CLASSIFICATION_SAMPLE = r"""
|
964 |
+
Example:
|
965 |
+
|
966 |
+
```python
|
967 |
+
>>> from transformers import {processor_class}, {model_class}
|
968 |
+
>>> import tensorflow as tf
|
969 |
+
|
970 |
+
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
|
971 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
972 |
+
|
973 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
|
974 |
+
|
975 |
+
>>> logits = model(**inputs).logits
|
976 |
+
|
977 |
+
>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
|
978 |
+
>>> model.config.id2label[predicted_class_id]
|
979 |
+
{expected_output}
|
980 |
+
```
|
981 |
+
|
982 |
+
```python
|
983 |
+
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
|
984 |
+
>>> num_labels = len(model.config.id2label)
|
985 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}", num_labels=num_labels)
|
986 |
+
|
987 |
+
>>> labels = tf.constant(1)
|
988 |
+
>>> loss = model(**inputs, labels=labels).loss
|
989 |
+
>>> round(float(loss), 2)
|
990 |
+
{expected_loss}
|
991 |
+
```
|
992 |
+
"""
|
993 |
+
|
994 |
+
TF_MASKED_LM_SAMPLE = r"""
|
995 |
+
Example:
|
996 |
+
|
997 |
+
```python
|
998 |
+
>>> from transformers import {processor_class}, {model_class}
|
999 |
+
>>> import tensorflow as tf
|
1000 |
+
|
1001 |
+
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
|
1002 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
1003 |
+
|
1004 |
+
>>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="tf")
|
1005 |
+
>>> logits = model(**inputs).logits
|
1006 |
+
|
1007 |
+
>>> # retrieve index of {mask}
|
1008 |
+
>>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0])
|
1009 |
+
>>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index)
|
1010 |
+
|
1011 |
+
>>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)
|
1012 |
+
>>> tokenizer.decode(predicted_token_id)
|
1013 |
+
{expected_output}
|
1014 |
+
```
|
1015 |
+
|
1016 |
+
```python
|
1017 |
+
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
|
1018 |
+
>>> # mask labels of non-{mask} tokens
|
1019 |
+
>>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
|
1020 |
+
|
1021 |
+
>>> outputs = model(**inputs, labels=labels)
|
1022 |
+
>>> round(float(outputs.loss), 2)
|
1023 |
+
{expected_loss}
|
1024 |
+
```
|
1025 |
+
"""
|
1026 |
+
|
1027 |
+
TF_BASE_MODEL_SAMPLE = r"""
|
1028 |
+
Example:
|
1029 |
+
|
1030 |
+
```python
|
1031 |
+
>>> from transformers import {processor_class}, {model_class}
|
1032 |
+
>>> import tensorflow as tf
|
1033 |
+
|
1034 |
+
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
|
1035 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
1036 |
+
|
1037 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
|
1038 |
+
>>> outputs = model(inputs)
|
1039 |
+
|
1040 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
1041 |
+
```
|
1042 |
+
"""
|
1043 |
+
|
1044 |
+
TF_MULTIPLE_CHOICE_SAMPLE = r"""
|
1045 |
+
Example:
|
1046 |
+
|
1047 |
+
```python
|
1048 |
+
>>> from transformers import {processor_class}, {model_class}
|
1049 |
+
>>> import tensorflow as tf
|
1050 |
+
|
1051 |
+
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
|
1052 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
1053 |
+
|
1054 |
+
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
1055 |
+
>>> choice0 = "It is eaten with a fork and a knife."
|
1056 |
+
>>> choice1 = "It is eaten while held in the hand."
|
1057 |
+
|
1058 |
+
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
|
1059 |
+
>>> inputs = {{k: tf.expand_dims(v, 0) for k, v in encoding.items()}}
|
1060 |
+
>>> outputs = model(inputs) # batch size is 1
|
1061 |
+
|
1062 |
+
>>> # the linear classifier still needs to be trained
|
1063 |
+
>>> logits = outputs.logits
|
1064 |
+
```
|
1065 |
+
"""
|
1066 |
+
|
1067 |
+
TF_CAUSAL_LM_SAMPLE = r"""
|
1068 |
+
Example:
|
1069 |
+
|
1070 |
+
```python
|
1071 |
+
>>> from transformers import {processor_class}, {model_class}
|
1072 |
+
>>> import tensorflow as tf
|
1073 |
+
|
1074 |
+
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
|
1075 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
1076 |
+
|
1077 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
|
1078 |
+
>>> outputs = model(inputs)
|
1079 |
+
>>> logits = outputs.logits
|
1080 |
+
```
|
1081 |
+
"""
|
1082 |
+
|
1083 |
+
TF_SPEECH_BASE_MODEL_SAMPLE = r"""
|
1084 |
+
Example:
|
1085 |
+
|
1086 |
+
```python
|
1087 |
+
>>> from transformers import {processor_class}, {model_class}
|
1088 |
+
>>> from datasets import load_dataset
|
1089 |
+
|
1090 |
+
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
|
1091 |
+
>>> dataset = dataset.sort("id")
|
1092 |
+
>>> sampling_rate = dataset.features["audio"].sampling_rate
|
1093 |
+
|
1094 |
+
>>> processor = {processor_class}.from_pretrained("{checkpoint}")
|
1095 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
1096 |
+
|
1097 |
+
>>> # audio file is decoded on the fly
|
1098 |
+
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="tf")
|
1099 |
+
>>> outputs = model(**inputs)
|
1100 |
+
|
1101 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
1102 |
+
>>> list(last_hidden_states.shape)
|
1103 |
+
{expected_output}
|
1104 |
+
```
|
1105 |
+
"""
|
1106 |
+
|
1107 |
+
TF_SPEECH_CTC_SAMPLE = r"""
|
1108 |
+
Example:
|
1109 |
+
|
1110 |
+
```python
|
1111 |
+
>>> from transformers import {processor_class}, {model_class}
|
1112 |
+
>>> from datasets import load_dataset
|
1113 |
+
>>> import tensorflow as tf
|
1114 |
+
|
1115 |
+
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
|
1116 |
+
>>> dataset = dataset.sort("id")
|
1117 |
+
>>> sampling_rate = dataset.features["audio"].sampling_rate
|
1118 |
+
|
1119 |
+
>>> processor = {processor_class}.from_pretrained("{checkpoint}")
|
1120 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
1121 |
+
|
1122 |
+
>>> # audio file is decoded on the fly
|
1123 |
+
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="tf")
|
1124 |
+
>>> logits = model(**inputs).logits
|
1125 |
+
>>> predicted_ids = tf.math.argmax(logits, axis=-1)
|
1126 |
+
|
1127 |
+
>>> # transcribe speech
|
1128 |
+
>>> transcription = processor.batch_decode(predicted_ids)
|
1129 |
+
>>> transcription[0]
|
1130 |
+
{expected_output}
|
1131 |
+
```
|
1132 |
+
|
1133 |
+
```python
|
1134 |
+
>>> inputs["labels"] = processor(text=dataset[0]["text"], return_tensors="tf").input_ids
|
1135 |
+
|
1136 |
+
>>> # compute loss
|
1137 |
+
>>> loss = model(**inputs).loss
|
1138 |
+
>>> round(float(loss), 2)
|
1139 |
+
{expected_loss}
|
1140 |
+
```
|
1141 |
+
"""
|
1142 |
+
|
1143 |
+
TF_VISION_BASE_MODEL_SAMPLE = r"""
|
1144 |
+
Example:
|
1145 |
+
|
1146 |
+
```python
|
1147 |
+
>>> from transformers import {processor_class}, {model_class}
|
1148 |
+
>>> from datasets import load_dataset
|
1149 |
+
|
1150 |
+
>>> dataset = load_dataset("huggingface/cats-image")
|
1151 |
+
>>> image = dataset["test"]["image"][0]
|
1152 |
+
|
1153 |
+
>>> feature_extractor = {processor_class}.from_pretrained("{checkpoint}")
|
1154 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
1155 |
+
|
1156 |
+
>>> inputs = feature_extractor(image, return_tensors="tf")
|
1157 |
+
>>> outputs = model(**inputs)
|
1158 |
+
|
1159 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
1160 |
+
>>> list(last_hidden_states.shape)
|
1161 |
+
{expected_output}
|
1162 |
+
```
|
1163 |
+
"""
|
1164 |
+
|
1165 |
+
TF_VISION_SEQ_CLASS_SAMPLE = r"""
|
1166 |
+
Example:
|
1167 |
+
|
1168 |
+
```python
|
1169 |
+
>>> from transformers import {processor_class}, {model_class}
|
1170 |
+
>>> import tensorflow as tf
|
1171 |
+
>>> from datasets import load_dataset
|
1172 |
+
|
1173 |
+
>>> dataset = load_dataset("huggingface/cats-image")
|
1174 |
+
>>> image = dataset["test"]["image"][0]
|
1175 |
+
|
1176 |
+
>>> feature_extractor = {processor_class}.from_pretrained("{checkpoint}")
|
1177 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
1178 |
+
|
1179 |
+
>>> inputs = feature_extractor(image, return_tensors="tf")
|
1180 |
+
>>> logits = model(**inputs).logits
|
1181 |
+
|
1182 |
+
>>> # model predicts one of the 1000 ImageNet classes
|
1183 |
+
>>> predicted_label = int(tf.math.argmax(logits, axis=-1))
|
1184 |
+
>>> print(model.config.id2label[predicted_label])
|
1185 |
+
{expected_output}
|
1186 |
+
```
|
1187 |
+
"""
|
1188 |
+
|
1189 |
+
TF_SAMPLE_DOCSTRINGS = {
|
1190 |
+
"SequenceClassification": TF_SEQUENCE_CLASSIFICATION_SAMPLE,
|
1191 |
+
"QuestionAnswering": TF_QUESTION_ANSWERING_SAMPLE,
|
1192 |
+
"TokenClassification": TF_TOKEN_CLASSIFICATION_SAMPLE,
|
1193 |
+
"MultipleChoice": TF_MULTIPLE_CHOICE_SAMPLE,
|
1194 |
+
"MaskedLM": TF_MASKED_LM_SAMPLE,
|
1195 |
+
"LMHead": TF_CAUSAL_LM_SAMPLE,
|
1196 |
+
"BaseModel": TF_BASE_MODEL_SAMPLE,
|
1197 |
+
"SpeechBaseModel": TF_SPEECH_BASE_MODEL_SAMPLE,
|
1198 |
+
"CTC": TF_SPEECH_CTC_SAMPLE,
|
1199 |
+
"VisionBaseModel": TF_VISION_BASE_MODEL_SAMPLE,
|
1200 |
+
"ImageClassification": TF_VISION_SEQ_CLASS_SAMPLE,
|
1201 |
+
}
|
1202 |
+
|
1203 |
+
FLAX_TOKEN_CLASSIFICATION_SAMPLE = r"""
|
1204 |
+
Example:
|
1205 |
+
|
1206 |
+
```python
|
1207 |
+
>>> from transformers import {processor_class}, {model_class}
|
1208 |
+
|
1209 |
+
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
|
1210 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
1211 |
+
|
1212 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
|
1213 |
+
|
1214 |
+
>>> outputs = model(**inputs)
|
1215 |
+
>>> logits = outputs.logits
|
1216 |
+
```
|
1217 |
+
"""
|
1218 |
+
|
1219 |
+
FLAX_QUESTION_ANSWERING_SAMPLE = r"""
|
1220 |
+
Example:
|
1221 |
+
|
1222 |
+
```python
|
1223 |
+
>>> from transformers import {processor_class}, {model_class}
|
1224 |
+
|
1225 |
+
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
|
1226 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
1227 |
+
|
1228 |
+
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
|
1229 |
+
>>> inputs = tokenizer(question, text, return_tensors="jax")
|
1230 |
+
|
1231 |
+
>>> outputs = model(**inputs)
|
1232 |
+
>>> start_scores = outputs.start_logits
|
1233 |
+
>>> end_scores = outputs.end_logits
|
1234 |
+
```
|
1235 |
+
"""
|
1236 |
+
|
1237 |
+
FLAX_SEQUENCE_CLASSIFICATION_SAMPLE = r"""
|
1238 |
+
Example:
|
1239 |
+
|
1240 |
+
```python
|
1241 |
+
>>> from transformers import {processor_class}, {model_class}
|
1242 |
+
|
1243 |
+
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
|
1244 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
1245 |
+
|
1246 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
|
1247 |
+
|
1248 |
+
>>> outputs = model(**inputs)
|
1249 |
+
>>> logits = outputs.logits
|
1250 |
+
```
|
1251 |
+
"""
|
1252 |
+
|
1253 |
+
FLAX_MASKED_LM_SAMPLE = r"""
|
1254 |
+
Example:
|
1255 |
+
|
1256 |
+
```python
|
1257 |
+
>>> from transformers import {processor_class}, {model_class}
|
1258 |
+
|
1259 |
+
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
|
1260 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
1261 |
+
|
1262 |
+
>>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="jax")
|
1263 |
+
|
1264 |
+
>>> outputs = model(**inputs)
|
1265 |
+
>>> logits = outputs.logits
|
1266 |
+
```
|
1267 |
+
"""
|
1268 |
+
|
1269 |
+
FLAX_BASE_MODEL_SAMPLE = r"""
|
1270 |
+
Example:
|
1271 |
+
|
1272 |
+
```python
|
1273 |
+
>>> from transformers import {processor_class}, {model_class}
|
1274 |
+
|
1275 |
+
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
|
1276 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
1277 |
+
|
1278 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
|
1279 |
+
>>> outputs = model(**inputs)
|
1280 |
+
|
1281 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
1282 |
+
```
|
1283 |
+
"""
|
1284 |
+
|
1285 |
+
FLAX_MULTIPLE_CHOICE_SAMPLE = r"""
|
1286 |
+
Example:
|
1287 |
+
|
1288 |
+
```python
|
1289 |
+
>>> from transformers import {processor_class}, {model_class}
|
1290 |
+
|
1291 |
+
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
|
1292 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
1293 |
+
|
1294 |
+
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
1295 |
+
>>> choice0 = "It is eaten with a fork and a knife."
|
1296 |
+
>>> choice1 = "It is eaten while held in the hand."
|
1297 |
+
|
1298 |
+
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True)
|
1299 |
+
>>> outputs = model(**{{k: v[None, :] for k, v in encoding.items()}})
|
1300 |
+
|
1301 |
+
>>> logits = outputs.logits
|
1302 |
+
```
|
1303 |
+
"""
|
1304 |
+
|
1305 |
+
FLAX_CAUSAL_LM_SAMPLE = r"""
|
1306 |
+
Example:
|
1307 |
+
|
1308 |
+
```python
|
1309 |
+
>>> from transformers import {processor_class}, {model_class}
|
1310 |
+
|
1311 |
+
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
|
1312 |
+
>>> model = {model_class}.from_pretrained("{checkpoint}")
|
1313 |
+
|
1314 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
|
1315 |
+
>>> outputs = model(**inputs)
|
1316 |
+
|
1317 |
+
>>> # retrieve logts for next token
|
1318 |
+
>>> next_token_logits = outputs.logits[:, -1]
|
1319 |
+
```
|
1320 |
+
"""
|
1321 |
+
|
1322 |
+
FLAX_SAMPLE_DOCSTRINGS = {
|
1323 |
+
"SequenceClassification": FLAX_SEQUENCE_CLASSIFICATION_SAMPLE,
|
1324 |
+
"QuestionAnswering": FLAX_QUESTION_ANSWERING_SAMPLE,
|
1325 |
+
"TokenClassification": FLAX_TOKEN_CLASSIFICATION_SAMPLE,
|
1326 |
+
"MultipleChoice": FLAX_MULTIPLE_CHOICE_SAMPLE,
|
1327 |
+
"MaskedLM": FLAX_MASKED_LM_SAMPLE,
|
1328 |
+
"BaseModel": FLAX_BASE_MODEL_SAMPLE,
|
1329 |
+
"LMHead": FLAX_CAUSAL_LM_SAMPLE,
|
1330 |
+
}
|
1331 |
+
|
1332 |
+
|
1333 |
+
def add_code_sample_docstrings(
|
1334 |
+
*docstr,
|
1335 |
+
processor_class=None,
|
1336 |
+
checkpoint=None,
|
1337 |
+
output_type=None,
|
1338 |
+
config_class=None,
|
1339 |
+
mask="[MASK]",
|
1340 |
+
qa_target_start_index=14,
|
1341 |
+
qa_target_end_index=15,
|
1342 |
+
model_cls=None,
|
1343 |
+
modality=None,
|
1344 |
+
expected_output="",
|
1345 |
+
expected_loss="",
|
1346 |
+
):
|
1347 |
+
def docstring_decorator(fn):
|
1348 |
+
# model_class defaults to function's class if not specified otherwise
|
1349 |
+
model_class = fn.__qualname__.split(".")[0] if model_cls is None else model_cls
|
1350 |
+
|
1351 |
+
if model_class[:2] == "TF":
|
1352 |
+
sample_docstrings = TF_SAMPLE_DOCSTRINGS
|
1353 |
+
elif model_class[:4] == "Flax":
|
1354 |
+
sample_docstrings = FLAX_SAMPLE_DOCSTRINGS
|
1355 |
+
else:
|
1356 |
+
sample_docstrings = PT_SAMPLE_DOCSTRINGS
|
1357 |
+
|
1358 |
+
# putting all kwargs for docstrings in a dict to be used
|
1359 |
+
# with the `.format(**doc_kwargs)`. Note that string might
|
1360 |
+
# be formatted with non-existing keys, which is fine.
|
1361 |
+
doc_kwargs = dict(
|
1362 |
+
model_class=model_class,
|
1363 |
+
processor_class=processor_class,
|
1364 |
+
checkpoint=checkpoint,
|
1365 |
+
mask=mask,
|
1366 |
+
qa_target_start_index=qa_target_start_index,
|
1367 |
+
qa_target_end_index=qa_target_end_index,
|
1368 |
+
expected_output=expected_output,
|
1369 |
+
expected_loss=expected_loss,
|
1370 |
+
)
|
1371 |
+
|
1372 |
+
if "SequenceClassification" in model_class and modality == "audio":
|
1373 |
+
code_sample = sample_docstrings["AudioClassification"]
|
1374 |
+
elif "SequenceClassification" in model_class:
|
1375 |
+
code_sample = sample_docstrings["SequenceClassification"]
|
1376 |
+
elif "QuestionAnswering" in model_class:
|
1377 |
+
code_sample = sample_docstrings["QuestionAnswering"]
|
1378 |
+
elif "TokenClassification" in model_class:
|
1379 |
+
code_sample = sample_docstrings["TokenClassification"]
|
1380 |
+
elif "MultipleChoice" in model_class:
|
1381 |
+
code_sample = sample_docstrings["MultipleChoice"]
|
1382 |
+
elif "MaskedLM" in model_class or model_class in ["FlaubertWithLMHeadModel", "XLMWithLMHeadModel"]:
|
1383 |
+
code_sample = sample_docstrings["MaskedLM"]
|
1384 |
+
elif "LMHead" in model_class or "CausalLM" in model_class:
|
1385 |
+
code_sample = sample_docstrings["LMHead"]
|
1386 |
+
elif "CTC" in model_class:
|
1387 |
+
code_sample = sample_docstrings["CTC"]
|
1388 |
+
elif "AudioFrameClassification" in model_class:
|
1389 |
+
code_sample = sample_docstrings["AudioFrameClassification"]
|
1390 |
+
elif "XVector" in model_class and modality == "audio":
|
1391 |
+
code_sample = sample_docstrings["AudioXVector"]
|
1392 |
+
elif "Model" in model_class and modality == "audio":
|
1393 |
+
code_sample = sample_docstrings["SpeechBaseModel"]
|
1394 |
+
elif "Model" in model_class and modality == "vision":
|
1395 |
+
code_sample = sample_docstrings["VisionBaseModel"]
|
1396 |
+
elif "Model" in model_class or "Encoder" in model_class:
|
1397 |
+
code_sample = sample_docstrings["BaseModel"]
|
1398 |
+
elif "ImageClassification" in model_class:
|
1399 |
+
code_sample = sample_docstrings["ImageClassification"]
|
1400 |
+
else:
|
1401 |
+
raise ValueError(f"Docstring can't be built for model {model_class}")
|
1402 |
+
|
1403 |
+
func_doc = (fn.__doc__ or "") + "".join(docstr)
|
1404 |
+
output_doc = "" if output_type is None else _prepare_output_docstrings(output_type, config_class)
|
1405 |
+
built_doc = code_sample.format(**doc_kwargs)
|
1406 |
+
fn.__doc__ = func_doc + output_doc + built_doc
|
1407 |
+
return fn
|
1408 |
+
|
1409 |
+
return docstring_decorator
|
1410 |
+
|
1411 |
+
|
1412 |
+
def prune_linear_layer(layer: nn.Linear, index: torch.LongTensor, dim: int = 0) -> nn.Linear:
|
1413 |
+
"""
|
1414 |
+
Prune a linear layer to keep only entries in index.
|
1415 |
+
|
1416 |
+
Used to remove heads.
|
1417 |
+
|
1418 |
+
Args:
|
1419 |
+
layer (`torch.nn.Linear`): The layer to prune.
|
1420 |
+
index (`torch.LongTensor`): The indices to keep in the layer.
|
1421 |
+
dim (`int`, *optional*, defaults to 0): The dimension on which to keep the indices.
|
1422 |
+
|
1423 |
+
Returns:
|
1424 |
+
`torch.nn.Linear`: The pruned layer as a new layer with `requires_grad=True`.
|
1425 |
+
"""
|
1426 |
+
index = index.to(layer.weight.device)
|
1427 |
+
W = layer.weight.index_select(dim, index).clone().detach()
|
1428 |
+
if layer.bias is not None:
|
1429 |
+
if dim == 1:
|
1430 |
+
b = layer.bias.clone().detach()
|
1431 |
+
else:
|
1432 |
+
b = layer.bias[index].clone().detach()
|
1433 |
+
new_size = list(layer.weight.size())
|
1434 |
+
new_size[dim] = len(index)
|
1435 |
+
new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device)
|
1436 |
+
new_layer.weight.requires_grad = False
|
1437 |
+
new_layer.weight.copy_(W.contiguous())
|
1438 |
+
new_layer.weight.requires_grad = True
|
1439 |
+
if layer.bias is not None:
|
1440 |
+
new_layer.bias.requires_grad = False
|
1441 |
+
new_layer.bias.copy_(b.contiguous())
|
1442 |
+
new_layer.bias.requires_grad = True
|
1443 |
+
return new_layer
|
1444 |
+
|
1445 |
+
|
1446 |
+
def apply_chunking_to_forward(
|
1447 |
+
forward_fn: Callable[..., torch.Tensor], chunk_size: int, chunk_dim: int, *input_tensors
|
1448 |
+
) -> torch.Tensor:
|
1449 |
+
"""
|
1450 |
+
This function chunks the `input_tensors` into smaller input tensor parts of size `chunk_size` over the dimension
|
1451 |
+
`chunk_dim`. It then applies a layer `forward_fn` to each chunk independently to save memory.
|
1452 |
+
|
1453 |
+
If the `forward_fn` is independent across the `chunk_dim` this function will yield the same result as directly
|
1454 |
+
applying `forward_fn` to `input_tensors`.
|
1455 |
+
|
1456 |
+
Args:
|
1457 |
+
forward_fn (`Callable[..., torch.Tensor]`):
|
1458 |
+
The forward function of the model.
|
1459 |
+
chunk_size (`int`):
|
1460 |
+
The chunk size of a chunked tensor: `num_chunks = len(input_tensors[0]) / chunk_size`.
|
1461 |
+
chunk_dim (`int`):
|
1462 |
+
The dimension over which the `input_tensors` should be chunked.
|
1463 |
+
input_tensors (`Tuple[torch.Tensor]`):
|
1464 |
+
The input tensors of `forward_fn` which will be chunked
|
1465 |
+
|
1466 |
+
Returns:
|
1467 |
+
`torch.Tensor`: A tensor with the same shape as the `forward_fn` would have given if applied`.
|
1468 |
+
|
1469 |
+
|
1470 |
+
Examples:
|
1471 |
+
|
1472 |
+
```python
|
1473 |
+
# rename the usual forward() fn to forward_chunk()
|
1474 |
+
def forward_chunk(self, hidden_states):
|
1475 |
+
hidden_states = self.decoder(hidden_states)
|
1476 |
+
return hidden_states
|
1477 |
+
|
1478 |
+
|
1479 |
+
# implement a chunked forward function
|
1480 |
+
def forward(self, hidden_states):
|
1481 |
+
return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states)
|
1482 |
+
```"""
|
1483 |
+
|
1484 |
+
assert len(input_tensors) > 0, f"{input_tensors} has to be a tuple/list of tensors"
|
1485 |
+
|
1486 |
+
# inspect.signature exist since python 3.5 and is a python method -> no problem with backward compatibility
|
1487 |
+
num_args_in_forward_chunk_fn = len(inspect.signature(forward_fn).parameters)
|
1488 |
+
if num_args_in_forward_chunk_fn != len(input_tensors):
|
1489 |
+
raise ValueError(
|
1490 |
+
f"forward_chunk_fn expects {num_args_in_forward_chunk_fn} arguments, but only {len(input_tensors)} input "
|
1491 |
+
"tensors are given"
|
1492 |
+
)
|
1493 |
+
|
1494 |
+
if chunk_size > 0:
|
1495 |
+
tensor_shape = input_tensors[0].shape[chunk_dim]
|
1496 |
+
for input_tensor in input_tensors:
|
1497 |
+
if input_tensor.shape[chunk_dim] != tensor_shape:
|
1498 |
+
raise ValueError(
|
1499 |
+
f"All input tenors have to be of the same shape: {tensor_shape}, "
|
1500 |
+
f"found shape {input_tensor.shape[chunk_dim]}"
|
1501 |
+
)
|
1502 |
+
|
1503 |
+
if input_tensors[0].shape[chunk_dim] % chunk_size != 0:
|
1504 |
+
raise ValueError(
|
1505 |
+
f"The dimension to be chunked {input_tensors[0].shape[chunk_dim]} has to be a multiple of the chunk "
|
1506 |
+
f"size {chunk_size}"
|
1507 |
+
)
|
1508 |
+
|
1509 |
+
num_chunks = input_tensors[0].shape[chunk_dim] // chunk_size
|
1510 |
+
|
1511 |
+
# chunk input tensor into tuples
|
1512 |
+
input_tensors_chunks = tuple(input_tensor.chunk(num_chunks, dim=chunk_dim) for input_tensor in input_tensors)
|
1513 |
+
# apply forward fn to every tuple
|
1514 |
+
output_chunks = tuple(forward_fn(*input_tensors_chunk) for input_tensors_chunk in zip(*input_tensors_chunks))
|
1515 |
+
# concatenate output at same dimension
|
1516 |
+
return torch.cat(output_chunks, dim=chunk_dim)
|
1517 |
+
|
1518 |
+
return forward_fn(*input_tensors)
|
1519 |
+
|
1520 |
+
|
1521 |
+
def find_pruneable_heads_and_indices(
|
1522 |
+
heads: List[int], n_heads: int, head_size: int, already_pruned_heads: Set[int]
|
1523 |
+
) -> Tuple[Set[int], torch.LongTensor]:
|
1524 |
+
"""
|
1525 |
+
Finds the heads and their indices taking `already_pruned_heads` into account.
|
1526 |
+
|
1527 |
+
Args:
|
1528 |
+
heads (`List[int]`): List of the indices of heads to prune.
|
1529 |
+
n_heads (`int`): The number of heads in the model.
|
1530 |
+
head_size (`int`): The size of each head.
|
1531 |
+
already_pruned_heads (`Set[int]`): A set of already pruned heads.
|
1532 |
+
|
1533 |
+
Returns:
|
1534 |
+
`Tuple[Set[int], torch.LongTensor]`: A tuple with the remaining heads and their corresponding indices.
|
1535 |
+
"""
|
1536 |
+
mask = torch.ones(n_heads, head_size)
|
1537 |
+
heads = set(heads) - already_pruned_heads # Convert to set and remove already pruned heads
|
1538 |
+
for head in heads:
|
1539 |
+
# Compute how many pruned heads are before the head and move the index accordingly
|
1540 |
+
head = head - sum(1 if h < head else 0 for h in already_pruned_heads)
|
1541 |
+
mask[head] = 0
|
1542 |
+
mask = mask.view(-1).contiguous().eq(1)
|
1543 |
+
index: torch.LongTensor = torch.arange(len(mask))[mask].long()
|
1544 |
+
return heads, index
|
chn_2_code.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2850ae4e9d3ad005d519d2e1d3e7916b1a8fab7884ef9ad88da62d8159673ee2
|
3 |
+
size 6044124
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"TAAS"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_TAAS.TAASConfig",
|
7 |
+
"AutoModel": "modeling_TAAS.TAAS",
|
8 |
+
"AutoModelForMaskedLM": "modeling_TAAS.TAAS"
|
9 |
+
},
|
10 |
+
"attention_probs_dropout_prob": 0.1,
|
11 |
+
"classifier_dropout": null,
|
12 |
+
"hidden_act": "gelu",
|
13 |
+
"hidden_dropout_prob": 0.1,
|
14 |
+
"hidden_size": 768,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"layer_norm_eps": 1e-05,
|
18 |
+
"max_position_embeddings": 2048,
|
19 |
+
"model_type": "TAAS",
|
20 |
+
"num_attention_heads": 12,
|
21 |
+
"num_hidden_layers": 12,
|
22 |
+
"pad_token_id": 0,
|
23 |
+
"position_embedding_type": "absolute",
|
24 |
+
"task_type_vocab_size": 3,
|
25 |
+
"torch_dtype": "float32",
|
26 |
+
"transformers_version": "4.25.1",
|
27 |
+
"type_vocab_size": 4,
|
28 |
+
"use_cache": true,
|
29 |
+
"use_task_id": true,
|
30 |
+
"vocab_size": 40000
|
31 |
+
}
|
configuration_TAAS.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
from transformers.configuration_utils import PretrainedConfig
|
5 |
+
|
6 |
+
|
7 |
+
class TAASConfig(PretrainedConfig):
|
8 |
+
model_type = "Stellar"
|
9 |
+
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
hidd_dropout=0.1,
|
13 |
+
intermediate_size=3072,
|
14 |
+
initialize_range=0.02,
|
15 |
+
max_pos_embeddings=2048,
|
16 |
+
hidd_act="gelu",
|
17 |
+
attention_dropout=0.1,
|
18 |
+
using_task_id=True,
|
19 |
+
vocabulary_size=40000,
|
20 |
+
hidd_size=768,
|
21 |
+
num_hidd_layers=12,
|
22 |
+
layer_norm_rate=1e-05,
|
23 |
+
num_atten_heads=12,
|
24 |
+
pad_token_id=0,
|
25 |
+
task_vocab_size=3,
|
26 |
+
classifier_drop=None,
|
27 |
+
pos_embedding="absolute",
|
28 |
+
use_cache=True,
|
29 |
+
vocab_size=4,
|
30 |
+
**kwargs
|
31 |
+
):
|
32 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
33 |
+
|
34 |
+
self.vocab_size = vocabulary_size
|
35 |
+
self.max_position_embeddings = max_pos_embeddings
|
36 |
+
self.type_vocab_size = vocab_size
|
37 |
+
self.use_task_id = using_task_id
|
38 |
+
self.layer_norm_eps = layer_norm_rate
|
39 |
+
self.position_embedding_type = pos_embedding
|
40 |
+
self.num_attention_heads = num_atten_heads
|
41 |
+
self.hidden_size = hidd_size
|
42 |
+
self.attention_probs_dropout_prob = attention_dropout
|
43 |
+
self.initializer_range = initialize_range
|
44 |
+
self.hidden_act = hidd_act
|
45 |
+
self.intermediate_size = intermediate_size
|
46 |
+
self.hidden_dropout_prob = hidd_dropout
|
47 |
+
self.use_cache = use_cache
|
48 |
+
self.classifier_dropout = classifier_drop
|
49 |
+
self.num_hidden_layers = num_hidd_layers
|
50 |
+
self.task_type_vocab_size = task_vocab_size
|
51 |
+
|
52 |
+
|
53 |
+
|
graphormer.py
ADDED
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from copy import deepcopy
|
2 |
+
from torch.nn.init import xavier_uniform_
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.nn import Parameter
|
5 |
+
from torch.nn.init import normal_
|
6 |
+
import torch.utils.checkpoint
|
7 |
+
from torch import Tensor, device
|
8 |
+
from TAAS_utils import *
|
9 |
+
from transformers.modeling_utils import ModuleUtilsMixin
|
10 |
+
from fairseq import utils
|
11 |
+
from fairseq.models import (
|
12 |
+
FairseqEncoder,
|
13 |
+
FairseqEncoderModel,
|
14 |
+
register_model,
|
15 |
+
register_model_architecture,
|
16 |
+
)
|
17 |
+
from fairseq.modules import (
|
18 |
+
LayerNorm,
|
19 |
+
)
|
20 |
+
from fairseq.utils import safe_hasattr
|
21 |
+
|
22 |
+
def init_params(module, n_layers):
|
23 |
+
if isinstance(module, nn.Linear):
|
24 |
+
module.weight.data.normal_(mean=0.0, std=0.02 / math.sqrt(n_layers))
|
25 |
+
if module.bias is not None:
|
26 |
+
module.bias.data.zero_()
|
27 |
+
if isinstance(module, nn.Embedding):
|
28 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
29 |
+
|
30 |
+
|
31 |
+
@torch.jit.script
|
32 |
+
def softmax_dropout(input, dropout_prob: float, is_training: bool):
|
33 |
+
return F.dropout(F.softmax(input, -1), dropout_prob, is_training)
|
34 |
+
|
35 |
+
|
36 |
+
class SelfMultiheadAttention(nn.Module):
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
embed_dim,
|
40 |
+
num_heads,
|
41 |
+
dropout=0.0,
|
42 |
+
bias=True,
|
43 |
+
scaling_factor=1,
|
44 |
+
):
|
45 |
+
super().__init__()
|
46 |
+
self.embed_dim = embed_dim
|
47 |
+
|
48 |
+
self.num_heads = num_heads
|
49 |
+
self.dropout = dropout
|
50 |
+
|
51 |
+
self.head_dim = embed_dim // num_heads
|
52 |
+
assert (self.head_dim * num_heads == self.embed_dim), "embed_dim must be divisible by num_heads"
|
53 |
+
self.scaling = (self.head_dim * scaling_factor) ** -0.5
|
54 |
+
|
55 |
+
self.linear_q = nn.Linear(self.embed_dim, self.num_heads * self.head_dim)
|
56 |
+
self.linear_k = nn.Linear(self.embed_dim, self.num_heads * self.head_dim)
|
57 |
+
self.linear_v = nn.Linear(self.embed_dim, self.num_heads * self.head_dim)
|
58 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=bias)
|
59 |
+
|
60 |
+
def forward(
|
61 |
+
self,
|
62 |
+
query: Tensor,
|
63 |
+
attn_bias: Tensor = None,
|
64 |
+
) -> Tensor:
|
65 |
+
n_graph, n_node, embed_dim = query.size()
|
66 |
+
# q, k, v = self.in_proj(query).chunk(3, dim=-1)
|
67 |
+
|
68 |
+
_shape = (-1, n_graph * self.num_heads, self.head_dim)
|
69 |
+
q = self.linear_q(query).contiguous().view(n_graph, -1, self.num_heads, self.head_dim).transpose(1, 2) * self.scaling
|
70 |
+
k = self.linear_k(query).contiguous().view(n_graph, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
71 |
+
v = self.linear_v(query).contiguous().view(n_graph, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
72 |
+
|
73 |
+
attn_weights = torch.matmul(q, k.transpose(2, 3))
|
74 |
+
attn_weights = attn_weights + attn_bias
|
75 |
+
attn_probs = softmax_dropout(attn_weights, self.dropout, self.training)
|
76 |
+
|
77 |
+
attn = torch.matmul(attn_probs, v)
|
78 |
+
attn = attn.transpose(1, 2).contiguous().view(n_graph, -1, embed_dim)
|
79 |
+
attn = self.out_proj(attn)
|
80 |
+
return attn
|
81 |
+
|
82 |
+
|
83 |
+
class Graphormer3DEncoderLayer(nn.Module):
|
84 |
+
"""
|
85 |
+
Implements a Graphormer-3D Encoder Layer.
|
86 |
+
"""
|
87 |
+
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
embedding_dim: int = 768,
|
91 |
+
ffn_embedding_dim: int = 3072,
|
92 |
+
num_attention_heads: int = 8,
|
93 |
+
dropout: float = 0.1,
|
94 |
+
attention_dropout: float = 0.1,
|
95 |
+
activation_dropout: float = 0.1,
|
96 |
+
) -> None:
|
97 |
+
super().__init__()
|
98 |
+
|
99 |
+
# Initialize parameters
|
100 |
+
self.embedding_dim = embedding_dim
|
101 |
+
self.num_attention_heads = num_attention_heads
|
102 |
+
self.attention_dropout = attention_dropout
|
103 |
+
|
104 |
+
self.dropout = dropout
|
105 |
+
self.activation_dropout = activation_dropout
|
106 |
+
|
107 |
+
self.self_attn = SelfMultiheadAttention(self.embedding_dim, num_attention_heads, dropout=attention_dropout)
|
108 |
+
# layer norm associated with the self attention layer
|
109 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embedding_dim)
|
110 |
+
self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
|
111 |
+
self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)
|
112 |
+
self.final_layer_norm = nn.LayerNorm(self.embedding_dim)
|
113 |
+
|
114 |
+
def forward(self, x: Tensor, attn_bias: Tensor = None):
|
115 |
+
residual = x
|
116 |
+
x = self.self_attn_layer_norm(x)
|
117 |
+
x = self.self_attn(query=x, attn_bias=attn_bias)
|
118 |
+
x = F.dropout(x, p=self.dropout, training=self.training)
|
119 |
+
x = residual + x
|
120 |
+
|
121 |
+
residual = x
|
122 |
+
x = self.final_layer_norm(x)
|
123 |
+
x = F.gelu(self.fc1(x))
|
124 |
+
x = F.dropout(x, p=self.activation_dropout, training=self.training)
|
125 |
+
x = self.fc2(x)
|
126 |
+
x = F.dropout(x, p=self.dropout, training=self.training)
|
127 |
+
x = residual + x
|
128 |
+
return x
|
129 |
+
|
130 |
+
|
131 |
+
from fairseq.models import (
|
132 |
+
BaseFairseqModel,
|
133 |
+
register_model,
|
134 |
+
register_model_architecture,
|
135 |
+
)
|
136 |
+
|
137 |
+
|
138 |
+
class Graphormer3D(BaseFairseqModel):
|
139 |
+
def __init__(self):
|
140 |
+
super().__init__()
|
141 |
+
self.atom_types = 64
|
142 |
+
self.edge_types = 64 * 64
|
143 |
+
self.embed_dim = 768
|
144 |
+
self.layer_nums = 12
|
145 |
+
self.ffn_embed_dim = 768
|
146 |
+
self.blocks = 4
|
147 |
+
self.attention_heads = 48
|
148 |
+
self.input_dropout = 0.0
|
149 |
+
self.dropout = 0.1
|
150 |
+
self.attention_dropout = 0.1
|
151 |
+
self.activation_dropout = 0.0
|
152 |
+
self.node_loss_weight = 15
|
153 |
+
self.min_node_loss_weight = 1
|
154 |
+
self.eng_loss_weight = 1
|
155 |
+
self.num_kernel = 128
|
156 |
+
self.atom_encoder = nn.Embedding(self.atom_types, self.embed_dim, padding_idx=0)
|
157 |
+
self.edge_embedding = nn.Embedding(32, self.attention_heads, padding_idx=0)
|
158 |
+
self.input_dropout = nn.Dropout(0.1)
|
159 |
+
self.layers = nn.ModuleList(
|
160 |
+
[
|
161 |
+
Graphormer3DEncoderLayer(
|
162 |
+
self.embed_dim,
|
163 |
+
self.ffn_embed_dim,
|
164 |
+
num_attention_heads=self.attention_heads,
|
165 |
+
dropout=self.dropout,
|
166 |
+
attention_dropout=self.attention_dropout,
|
167 |
+
activation_dropout=self.activation_dropout,
|
168 |
+
)
|
169 |
+
for _ in range(self.layer_nums)
|
170 |
+
]
|
171 |
+
)
|
172 |
+
self.atom_encoder = nn.Embedding(512 * 9 + 1, self.embed_dim, padding_idx=0)
|
173 |
+
self.edge_encoder = nn.Embedding(512 * 3 + 1, self.attention_heads, padding_idx=0)
|
174 |
+
self.edge_type = 'multi_hop'
|
175 |
+
if self.edge_type == 'multi_hop':
|
176 |
+
self.edge_dis_encoder = nn.Embedding(16 * self.attention_heads * self.attention_heads, 1)
|
177 |
+
self.spatial_pos_encoder = nn.Embedding(512, self.attention_heads, padding_idx=0)
|
178 |
+
self.in_degree_encoder = nn.Embedding(512, self.embed_dim, padding_idx=0)
|
179 |
+
self.out_degree_encoder = nn.Embedding(512, self.embed_dim, padding_idx=0)
|
180 |
+
self.node_position_ids_encoder = nn.Embedding(10, self.embed_dim, padding_idx=0)
|
181 |
+
|
182 |
+
self.final_ln: Callable[[Tensor], Tensor] = nn.LayerNorm(self.embed_dim)
|
183 |
+
|
184 |
+
self.engergy_proj: Callable[[Tensor], Tensor] = NonLinear(self.embed_dim, 1)
|
185 |
+
self.energe_agg_factor: Callable[[Tensor], Tensor] = nn.Embedding(3, 1)
|
186 |
+
nn.init.normal_(self.energe_agg_factor.weight, 0, 0.01)
|
187 |
+
|
188 |
+
self.graph_token = nn.Embedding(1, 768)
|
189 |
+
self.graph_token_virtual_distance = nn.Embedding(1, self.attention_heads)
|
190 |
+
|
191 |
+
K = self.num_kernel
|
192 |
+
|
193 |
+
self.gbf: Callable[[Tensor, Tensor], Tensor] = GaussianLayer(K, self.edge_types)
|
194 |
+
self.bias_proj: Callable[[Tensor], Tensor] = NonLinear(K, self.attention_heads)
|
195 |
+
self.edge_proj: Callable[[Tensor], Tensor] = nn.Linear(K, self.embed_dim)
|
196 |
+
self.node_proc: Callable[[Tensor, Tensor, Tensor], Tensor] = NodeTaskHead(self.embed_dim, self.attention_heads)
|
197 |
+
|
198 |
+
def forward(self, node_feature, spatial_pos, in_degree, out_degree, edge_type_matrix, edge_input, node_position_ids):
|
199 |
+
"""
|
200 |
+
attn_bias:图中节点对之间的最短路径距离超过最短路径限制最大距离(spatial_pos_max)的位置为-inf,其余位置为0,形状为(n_graph, n_node+1, n_node+1)
|
201 |
+
spatial_pos:图中节点对之间的最短路径长度,形状为(n_graph, n_node, n_node)
|
202 |
+
x:图中节点的特征,形状为(n_graph, n_node, n_node_features)
|
203 |
+
in_degree:图中节点的入度,形状为(n_graph, n_node)
|
204 |
+
out_degree:图中节点的出度,形状为(n_graph, n_node)
|
205 |
+
edge_input:图中节点对之间的最短路径(限制最短路径最大跳数为multi_hop_max_dist)上的边的特征,形状为(n_graph, n_node, n_node, multi_hop_max_dist, n_edge_features)
|
206 |
+
attn_edge_type:图的边特征,形状为(n_graph, n_node, n_node, n_edge_features)
|
207 |
+
:param batch_data:
|
208 |
+
:return:
|
209 |
+
"""
|
210 |
+
# attn_bias, spatial_pos, x = batch_data.attn_bias, batch_data.spatial_pos, batch_data.x
|
211 |
+
# in_degree, out_degree = batch_data.in_degree, batch_data.out_degree
|
212 |
+
# edge_input, attn_edge_type = batch_data.edge_input, batch_data.attn_edge_type
|
213 |
+
# graph_attn_bias
|
214 |
+
attn_edge_type = self.edge_embedding(edge_type_matrix)
|
215 |
+
edge_input = self.edge_embedding(edge_input)#.mean(-2)
|
216 |
+
# 添加虚拟节点表示全图特征表示,之后按照图中正常节点处理
|
217 |
+
n_graph, n_node = node_feature.size()[:2]
|
218 |
+
# graph_attn_bias = attn_bias.clone()
|
219 |
+
# graph_attn_bias = graph_attn_bias.unsqueeze(1).repeat(1, self.attention_heads, 1, 1) # [n_graph, n_head, n_node+1, n_node+1]
|
220 |
+
|
221 |
+
# spatial pos
|
222 |
+
# 空间编码,节点之间最短路径长度对应的可学习标量
|
223 |
+
# [n_graph, n_node, n_node, n_head] -> [n_graph, n_head, n_node, n_node]
|
224 |
+
spatial_pos_bias = self.spatial_pos_encoder(spatial_pos).permute(0, 3, 1, 2)
|
225 |
+
# graph_attn_bias[:, :, 1:, 1:] = graph_attn_bias[:, :, 1:, 1:] + spatial_pos_bias
|
226 |
+
# graph_attn_bias = spatial_pos_bias
|
227 |
+
# reset spatial pos here
|
228 |
+
# 所有节点都和虚拟节点直接有边相连,则所有节点和虚拟节点之间的最短路径长度为1
|
229 |
+
# t = self.graph_token_virtual_distance.weight.view(1, self.attention_heads, 1)
|
230 |
+
# graph_attn_bias[:, :, 1:, 0] = graph_attn_bias[:, :, 1:, 0] + t
|
231 |
+
# graph_attn_bias[:, :, 0, :] = graph_attn_bias[:, :, 0, :] + t
|
232 |
+
# edge feature
|
233 |
+
# 每个节点对沿最短路径计算边特征和可学习嵌入点积的平均值,并作为偏置项添加到注意模块中
|
234 |
+
if self.edge_type == 'multi_hop':
|
235 |
+
spatial_pos_ = spatial_pos.clone()
|
236 |
+
spatial_pos_[spatial_pos_ == 0] = 1 # set pad to 1
|
237 |
+
# set 1 to 1, x > 1 to x - 1
|
238 |
+
spatial_pos_ = torch.where(spatial_pos_ > 1, spatial_pos_ - 1, spatial_pos_)
|
239 |
+
# if self.multi_hop_max_dist > 0:
|
240 |
+
# spatial_pos_ = spatial_pos_.clamp(0, self.multi_hop_max_dist)
|
241 |
+
# edge_input = edge_input[:, :, :, :self.multi_hop_max_dist, :]
|
242 |
+
# [n_graph, n_node, n_node, max_dist, n_head]
|
243 |
+
# edge_input = self.edge_encoder(edge_input).mean(-2)
|
244 |
+
max_dist = edge_input.size(-2)
|
245 |
+
edge_input_flat = edge_input.permute(3, 0, 1, 2, 4).reshape(max_dist, -1, self.attention_heads)
|
246 |
+
edge_input_flat = torch.bmm(edge_input_flat, self.edge_dis_encoder.weight.reshape(-1, self.attention_heads, self.attention_heads)[:max_dist, :, :])
|
247 |
+
edge_input = edge_input_flat.reshape(max_dist, n_graph, n_node, n_node, self.attention_heads).permute(1, 2, 3, 0, 4)
|
248 |
+
edge_input = (edge_input.sum(-2) / (spatial_pos_.float().unsqueeze(-1))).permute(0, 3, 1, 2)
|
249 |
+
else:
|
250 |
+
# [n_graph, n_node, n_node, n_head] -> [n_graph, n_head, n_node, n_node]
|
251 |
+
edge_input = self.edge_encoder(attn_edge_type).mean(-2).permute(0, 3, 1, 2)
|
252 |
+
|
253 |
+
# graph_attn_bias[:, :, 1:, 1:] = graph_attn_bias[:, :, 1:, 1:] + edge_input
|
254 |
+
graph_attn_bias = spatial_pos_bias + edge_input
|
255 |
+
# graph_attn_bias = graph_attn_bias + attn_bias.unsqueeze(1) # reset
|
256 |
+
# graph_attn_bias = graph_attn_bias.contiguous().view(-1, 6, 6)
|
257 |
+
# node feauture + graph token
|
258 |
+
# node_feature = x # self.atom_encoder(x).sum(dim=-2) # [n_graph, n_node, n_hidden]
|
259 |
+
# if self.flag and perturb is not None:
|
260 |
+
# node_feature += perturb
|
261 |
+
|
262 |
+
node_position_embedding = self.node_position_ids_encoder(node_position_ids)
|
263 |
+
node_position_embedding = node_position_embedding.contiguous().view(n_graph, n_node, self.embed_dim)
|
264 |
+
# print(node_position_embedding.shape)
|
265 |
+
# 根据节点的入度、出度为每个节点分配两个实值嵌入向量,添加到节点特征中作为输入
|
266 |
+
node_feature = node_feature + self.in_degree_encoder(in_degree) + \
|
267 |
+
self.out_degree_encoder(out_degree) + node_position_embedding
|
268 |
+
# print(node_feature.shape)
|
269 |
+
# graph_token_feature = self.graph_token.weight.unsqueeze(0).repeat(n_graph, 1, 1)
|
270 |
+
# graph_node_feature = torch.cat([graph_token_feature, node_feature], dim=1)
|
271 |
+
|
272 |
+
# transfomrer encoder
|
273 |
+
output = self.input_dropout(node_feature)#.permute(1, 0, 2)
|
274 |
+
for enc_layer in self.layers:
|
275 |
+
output = enc_layer(output, graph_attn_bias)
|
276 |
+
output = self.final_ln(output)
|
277 |
+
|
278 |
+
# output part
|
279 |
+
# 整个图的表示是最后一层虚拟节点的特征
|
280 |
+
# if self.dataset_name == 'PCQM4M-LSC':
|
281 |
+
# # get whole graph rep
|
282 |
+
# output = self.out_proj(output[:, 0, :])
|
283 |
+
# else:
|
284 |
+
# output = self.downstream_out_proj(output[:, 0, :])
|
285 |
+
# print(output.shape)
|
286 |
+
return output
|
287 |
+
|
288 |
+
|
289 |
+
@torch.jit.script
|
290 |
+
def gaussian(x, mean, std):
|
291 |
+
pi = 3.14159
|
292 |
+
a = (2 * pi) ** 0.5
|
293 |
+
return torch.exp(-0.5 * (((x - mean) / std) ** 2)) / (a * std)
|
294 |
+
|
295 |
+
|
296 |
+
class GaussianLayer(nn.Module):
|
297 |
+
def __init__(self, K=128, edge_types=1024):
|
298 |
+
super().__init__()
|
299 |
+
self.K = K
|
300 |
+
self.means = nn.Embedding(1, K)
|
301 |
+
self.stds = nn.Embedding(1, K)
|
302 |
+
self.mul = nn.Embedding(edge_types, 1)
|
303 |
+
self.bias = nn.Embedding(edge_types, 1)
|
304 |
+
nn.init.uniform_(self.means.weight, 0, 3)
|
305 |
+
nn.init.uniform_(self.stds.weight, 0, 3)
|
306 |
+
nn.init.constant_(self.bias.weight, 0)
|
307 |
+
nn.init.constant_(self.mul.weight, 1)
|
308 |
+
|
309 |
+
def forward(self, x, edge_types):
|
310 |
+
mul = self.mul(edge_types)
|
311 |
+
bias = self.bias(edge_types)
|
312 |
+
x = mul * x.unsqueeze(-1) + bias
|
313 |
+
x = x.expand(-1, -1, -1, self.K)
|
314 |
+
mean = self.means.weight.float().view(-1)
|
315 |
+
std = self.stds.weight.float().view(-1).abs() + 1e-5
|
316 |
+
return gaussian(x.float(), mean, std).type_as(self.means.weight)
|
317 |
+
|
318 |
+
|
319 |
+
class RBF(nn.Module):
|
320 |
+
def __init__(self, K, edge_types):
|
321 |
+
super().__init__()
|
322 |
+
self.K = K
|
323 |
+
self.means = nn.parameter.Parameter(torch.empty(K))
|
324 |
+
self.temps = nn.parameter.Parameter(torch.empty(K))
|
325 |
+
self.mul: Callable[..., Tensor] = nn.Embedding(edge_types, 1)
|
326 |
+
self.bias: Callable[..., Tensor] = nn.Embedding(edge_types, 1)
|
327 |
+
nn.init.uniform_(self.means, 0, 3)
|
328 |
+
nn.init.uniform_(self.temps, 0.1, 10)
|
329 |
+
nn.init.constant_(self.bias.weight, 0)
|
330 |
+
nn.init.constant_(self.mul.weight, 1)
|
331 |
+
|
332 |
+
def forward(self, x: Tensor, edge_types):
|
333 |
+
mul = self.mul(edge_types)
|
334 |
+
bias = self.bias(edge_types)
|
335 |
+
x = mul * x.unsqueeze(-1) + bias
|
336 |
+
mean = self.means.float()
|
337 |
+
temp = self.temps.float().abs()
|
338 |
+
return ((x - mean).square() * (-temp)).exp().type_as(self.means)
|
339 |
+
|
340 |
+
|
341 |
+
class NonLinear(nn.Module):
|
342 |
+
def __init__(self, input, output_size, hidden=None):
|
343 |
+
super(NonLinear, self).__init__()
|
344 |
+
if hidden is None:
|
345 |
+
hidden = input
|
346 |
+
self.layer1 = nn.Linear(input, hidden)
|
347 |
+
self.layer2 = nn.Linear(hidden, output_size)
|
348 |
+
|
349 |
+
def forward(self, x):
|
350 |
+
x = F.gelu(self.layer1(x))
|
351 |
+
x = self.layer2(x)
|
352 |
+
return x
|
353 |
+
|
354 |
+
|
355 |
+
class NodeTaskHead(nn.Module):
|
356 |
+
def __init__(
|
357 |
+
self,
|
358 |
+
embed_dim: int,
|
359 |
+
num_heads: int,
|
360 |
+
):
|
361 |
+
super().__init__()
|
362 |
+
self.embed_dim = embed_dim
|
363 |
+
self.q_proj: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, embed_dim)
|
364 |
+
self.k_proj: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, embed_dim)
|
365 |
+
self.v_proj: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, embed_dim)
|
366 |
+
self.num_heads = num_heads
|
367 |
+
self.scaling = (embed_dim // num_heads) ** -0.5
|
368 |
+
self.force_proj1: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, 1)
|
369 |
+
self.force_proj2: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, 1)
|
370 |
+
self.force_proj3: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, 1)
|
371 |
+
|
372 |
+
def forward(
|
373 |
+
self,
|
374 |
+
query: Tensor,
|
375 |
+
attn_bias: Tensor,
|
376 |
+
delta_pos: Tensor,
|
377 |
+
) -> Tensor:
|
378 |
+
bsz, n_node, _ = query.size()
|
379 |
+
q = (self.q_proj(query).view(bsz, n_node, self.num_heads, -1).transpose(1, 2) * self.scaling)
|
380 |
+
k = self.k_proj(query).view(bsz, n_node, self.num_heads, -1).transpose(1, 2)
|
381 |
+
v = self.v_proj(query).view(bsz, n_node, self.num_heads, -1).transpose(1, 2)
|
382 |
+
attn = q @ k.transpose(-1, -2) # [bsz, head, n, n]
|
383 |
+
attn_probs = softmax_dropout(attn.view(-1, n_node, n_node) + attn_bias, 0.1, self.training).view(bsz, self.num_heads, n_node, n_node)
|
384 |
+
rot_attn_probs = attn_probs.unsqueeze(-1) * delta_pos.unsqueeze(1).type_as(attn_probs) # [bsz, head, n, n, 3]
|
385 |
+
rot_attn_probs = rot_attn_probs.permute(0, 1, 4, 2, 3)
|
386 |
+
x = rot_attn_probs @ v.unsqueeze(2) # [bsz, head , 3, n, d]
|
387 |
+
x = x.permute(0, 3, 2, 1, 4).contiguous().view(bsz, n_node, 3, -1)
|
388 |
+
f1 = self.force_proj1(x[:, :, 0, :]).view(bsz, n_node, 1)
|
389 |
+
f2 = self.force_proj2(x[:, :, 1, :]).view(bsz, n_node, 1)
|
390 |
+
f3 = self.force_proj3(x[:, :, 2, :]).view(bsz, n_node, 1)
|
391 |
+
cur_force = torch.cat([f1, f2, f3], dim=-1).float()
|
392 |
+
return cur_force
|
393 |
+
|
htc_loss.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! python3
|
2 |
+
# -*- encoding: utf-8 -*-
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import pandas as pd
|
7 |
+
import sys
|
8 |
+
import os
|
9 |
+
|
10 |
+
from transformers.utils.hub import cached_file
|
11 |
+
|
12 |
+
resolved_module_file = cached_file(
|
13 |
+
'Cainiao-AI/TAAS',
|
14 |
+
'htc_mask_dict_old.pkl'
|
15 |
+
)
|
16 |
+
|
17 |
+
htc_weights = [0.067, 0.133, 0.2, 0.267, 0.333]
|
18 |
+
htc_mask_dict = pd.read_pickle(resolved_module_file)
|
19 |
+
import numpy as np
|
20 |
+
import operator
|
21 |
+
def calculate_multi_htc_acc_batch(predicted_htc, y, sequence_len = 6):
|
22 |
+
acc_cnt = np.array([0, 0, 0, 0, 0])
|
23 |
+
y = y.view(-1, sequence_len, 5).tolist()
|
24 |
+
predicted = np.array(predicted_htc).reshape(-1, sequence_len, 5).tolist()
|
25 |
+
batch_size = len(y)
|
26 |
+
total_cnt = np.array([0, 0, 0, 0, 0])
|
27 |
+
for batch_i in range(batch_size):
|
28 |
+
for index, s2 in enumerate(y[batch_i]):
|
29 |
+
for c, i in enumerate(range(5)):
|
30 |
+
y_l10 = y[batch_i][index][:i+1]
|
31 |
+
p_l10 = predicted[batch_i][index][:i+1]
|
32 |
+
if -100 in y_l10:
|
33 |
+
break
|
34 |
+
|
35 |
+
if operator.eq(y_l10, p_l10):
|
36 |
+
acc_cnt[c] += 1
|
37 |
+
total_cnt[c] += 1
|
38 |
+
|
39 |
+
return acc_cnt, total_cnt
|
40 |
+
|
41 |
+
|
42 |
+
class HTCLoss(torch.nn.Module):
|
43 |
+
def __init__(self, device, reduction='mean', using_htc = True):
|
44 |
+
super(HTCLoss, self).__init__()
|
45 |
+
self.reduction = reduction
|
46 |
+
self.htc_weights = htc_weights
|
47 |
+
self.device = device
|
48 |
+
self.using_htc = using_htc
|
49 |
+
self.htc_mask_dict = htc_mask_dict
|
50 |
+
for key, value in self.htc_mask_dict.items():
|
51 |
+
# self.htc_mask_dict[key] = torch.tensor(value).to(self.device)
|
52 |
+
self.htc_mask_dict[key] = torch.tensor(value).clone().detach().to(self.device)
|
53 |
+
|
54 |
+
def forward(self, logits, target): # [bs,num_class] CE=q*-log(p), q*log(1-p),p=softmax(logits)
|
55 |
+
# target相关变量都在cuda上
|
56 |
+
target = target.reshape(-1, 1)
|
57 |
+
target_mask = target != -100
|
58 |
+
target_mask = target_mask.squeeze()
|
59 |
+
target_mask_idx = torch.where(target == -100)
|
60 |
+
target_new = target.clone()
|
61 |
+
target_new[target_mask_idx] = 0
|
62 |
+
predict_res = []
|
63 |
+
if not self.using_htc:
|
64 |
+
log_pro = -1.0 * F.log_softmax(logits, dim=1)
|
65 |
+
# one_hot = torch.zeros(logits.shape[0], logits.shape[1]).to(self.device) # .cuda()
|
66 |
+
# one_hot = one_hot.scatter_(1, target_new, 1)
|
67 |
+
# loss = torch.mul(log_pro, one_hot).sum(dim=1)
|
68 |
+
# loss = loss*target_mask
|
69 |
+
else:
|
70 |
+
# _, predicted = torch.max(logits[:, :32], 1)
|
71 |
+
logits_reshaped = logits.clone()
|
72 |
+
logits_reshaped = logits_reshaped.reshape(-1, 5, 100)
|
73 |
+
_, aa_predicted = torch.max(logits_reshaped[:,0,1:32], 1)
|
74 |
+
aa_predicted += 1
|
75 |
+
logits_new = -5 * torch.ones_like(logits_reshaped).to(self.device)
|
76 |
+
logits_new[:,0,1:32] = logits_reshaped[:,0,1:32]
|
77 |
+
for sample_idx, aa in enumerate(aa_predicted):
|
78 |
+
bb_idx = htc_mask_dict['{:02d}'.format(aa)]
|
79 |
+
_, bb_idy = torch.max(logits_reshaped[sample_idx,1,bb_idx], 0)
|
80 |
+
bb = bb_idx[bb_idy]
|
81 |
+
logits_new[sample_idx,1,bb_idx] = logits_reshaped[sample_idx,1,bb_idx]
|
82 |
+
cc_idx = htc_mask_dict['{:02d}{:02d}'.format(aa, bb)]
|
83 |
+
_, cc_idy = torch.max(logits_reshaped[sample_idx,2,cc_idx], 0)
|
84 |
+
logits_new[sample_idx,2,cc_idx] = logits_reshaped[sample_idx,2,cc_idx]
|
85 |
+
cc = cc_idx[cc_idy]
|
86 |
+
d_idx = htc_mask_dict['{:02d}{:02d}{:02d}'.format(aa, bb, cc)]
|
87 |
+
_, d_idy = torch.max(logits_reshaped[sample_idx,3,d_idx], 0)
|
88 |
+
logits_new[sample_idx,3,d_idx] = logits_reshaped[sample_idx,3,d_idx]
|
89 |
+
d = d_idx[d_idy]
|
90 |
+
ee_idx = htc_mask_dict['{:02d}{:02d}{:02d}{:01d}'.format(aa, bb, cc, d)]
|
91 |
+
_, ee_idy = torch.max(logits_reshaped[sample_idx,4,ee_idx], 0)
|
92 |
+
logits_new[sample_idx,4,ee_idx] = logits_reshaped[sample_idx,4,ee_idx]
|
93 |
+
ee = ee_idx[ee_idy]
|
94 |
+
predict_res.extend([aa.item(), bb.item(), cc.item(), d.item(), ee.item()])
|
95 |
+
# predicted = predicted.reshape(-1, 5)
|
96 |
+
# aa = predicted[:, 0]
|
97 |
+
# aa = ['{:02d}'.format(i) for i in aa]
|
98 |
+
# bb_activate = [htc_mask_dict[i] for i in aa]
|
99 |
+
logits_new = logits_new.reshape(-1, 100)
|
100 |
+
log_pro = -1.0 * F.log_softmax(logits_new, dim=1)
|
101 |
+
logits = logits.contiguous().view(-1, 100)
|
102 |
+
one_hot = torch.zeros(logits.shape[0], logits.shape[1]).to(self.device) # .cuda()
|
103 |
+
one_hot = one_hot.scatter_(1, target_new, 1)
|
104 |
+
loss = torch.mul(log_pro, one_hot).sum(dim=1)
|
105 |
+
loss = loss*target_mask
|
106 |
+
bs = int(loss.shape[0] / 5)
|
107 |
+
w_loss = []
|
108 |
+
for i in range(bs):
|
109 |
+
w_loss.extend(self.htc_weights)
|
110 |
+
w_loss = torch.FloatTensor(w_loss).to(self.device)
|
111 |
+
loss = loss.mul(w_loss) * 5
|
112 |
+
if self.reduction == 'mean':
|
113 |
+
loss = loss[torch.where(loss>0)].mean()
|
114 |
+
elif self.reduction == 'sum':
|
115 |
+
loss = loss[torch.where(loss>0)].sum()
|
116 |
+
return loss, predict_res
|
117 |
+
|
118 |
+
def get_htc_code(self, logits): # [bs,num_class] CE=q*-log(p), q*log(1-p),p=softmax(logits)
|
119 |
+
logits_reshaped = logits.clone()
|
120 |
+
logits_reshaped = logits_reshaped.reshape(-1, 5, 100)
|
121 |
+
_, aa_predicted = torch.max(logits_reshaped[:,0,1:32], 1)
|
122 |
+
aa_predicted += 1
|
123 |
+
logits_new = -5 * torch.ones_like(logits_reshaped).to(self.device)
|
124 |
+
logits_new[:,0,1:32] = logits_reshaped[:,0,1:32]
|
125 |
+
predict_res = []
|
126 |
+
for sample_idx, aa in enumerate(aa_predicted):
|
127 |
+
bb_idx = htc_mask_dict['{:02d}'.format(aa)]
|
128 |
+
_, bb_idy = torch.max(logits_reshaped[sample_idx,1,bb_idx], 0)
|
129 |
+
bb = bb_idx[bb_idy]
|
130 |
+
logits_new[sample_idx,1,bb_idx] = logits_reshaped[sample_idx,1,bb_idx]
|
131 |
+
cc_idx = htc_mask_dict['{:02d}{:02d}'.format(aa, bb)]
|
132 |
+
_, cc_idy = torch.max(logits_reshaped[sample_idx,2,cc_idx], 0)
|
133 |
+
logits_new[sample_idx,2,cc_idx] = logits_reshaped[sample_idx,2,cc_idx]
|
134 |
+
cc = cc_idx[cc_idy]
|
135 |
+
d_idx = htc_mask_dict['{:02d}{:02d}{:02d}'.format(aa, bb, cc)]
|
136 |
+
_, d_idy = torch.max(logits_reshaped[sample_idx,3,d_idx], 0)
|
137 |
+
logits_new[sample_idx,3,d_idx] = logits_reshaped[sample_idx,3,d_idx]
|
138 |
+
d = d_idx[d_idy]
|
139 |
+
ee_idx = htc_mask_dict['{:02d}{:02d}{:02d}{:01d}'.format(aa, bb, cc, d)]
|
140 |
+
_, ee_idy = torch.max(logits_reshaped[sample_idx,4,ee_idx], 0)
|
141 |
+
logits_new[sample_idx,4,ee_idx] = logits_reshaped[sample_idx,4,ee_idx]
|
142 |
+
ee = ee_idx[ee_idy]
|
143 |
+
predict_res.extend([aa.item(), bb.item(), cc.item(), d.item(), ee.item()])
|
144 |
+
return predict_res
|
145 |
+
|
htc_mask_dict_old.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf03eaf44926730e193f5b37ccf7fb36561b411d64d635495b2e9c87d8e5ecea
|
3 |
+
size 250511
|
imgs/overview.png
ADDED
Git LFS Details
|
modeling_TAAS.py
ADDED
@@ -0,0 +1,1034 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! python3
|
2 |
+
# -*- encoding: utf-8 -*-
|
3 |
+
|
4 |
+
from copy import deepcopy
|
5 |
+
from torch.nn.init import xavier_uniform_
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch.nn import Parameter
|
8 |
+
from torch.nn.init import normal_
|
9 |
+
import torch.utils.checkpoint
|
10 |
+
from torch import Tensor, device
|
11 |
+
from TAAS_utils import *
|
12 |
+
from transformers.modeling_utils import ModuleUtilsMixin
|
13 |
+
from transformers import AutoTokenizer, AutoModel, BertTokenizer
|
14 |
+
from graphormer import Graphormer3D
|
15 |
+
import pickle
|
16 |
+
import torch
|
17 |
+
import sys
|
18 |
+
from ner_model import NER_model
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
|
22 |
+
from htc_loss import HTCLoss
|
23 |
+
from transformers.utils.hub import cached_file
|
24 |
+
remap_code_2_chn_file_path = cached_file(
|
25 |
+
'Cainiao-AI/TAAS',
|
26 |
+
'remap_code_2_chn.pkl'
|
27 |
+
)
|
28 |
+
s2_label_dict_remap = {
|
29 |
+
0: '0',
|
30 |
+
1: '1',
|
31 |
+
2: '2',
|
32 |
+
3: '3',
|
33 |
+
4: '4',
|
34 |
+
5: '5',
|
35 |
+
6: '6',
|
36 |
+
7: '7',
|
37 |
+
8: '8',
|
38 |
+
9: '9',
|
39 |
+
10: 'a',
|
40 |
+
11: 'b',
|
41 |
+
12: 'c',
|
42 |
+
13: 'd',
|
43 |
+
14: 'e',
|
44 |
+
15: 'f'}
|
45 |
+
|
46 |
+
class StellarEmbedding(nn.Module):
|
47 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
48 |
+
|
49 |
+
def __init__(self, config):
|
50 |
+
super().__init__()
|
51 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
52 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
53 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
54 |
+
self.ner_type_embeddings = nn.Embedding(10, config.hidden_size)
|
55 |
+
self.use_task_id = config.use_task_id
|
56 |
+
if config.use_task_id:
|
57 |
+
self.task_type_embeddings = nn.Embedding(config.task_type_vocab_size, config.hidden_size)
|
58 |
+
|
59 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
60 |
+
# any TensorFlow checkpoint file
|
61 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
62 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
63 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
64 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
65 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
66 |
+
self.register_buffer("token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long),
|
67 |
+
persistent=False)
|
68 |
+
self._reset_parameters()
|
69 |
+
|
70 |
+
def forward(
|
71 |
+
self,
|
72 |
+
input_ids: Optional[torch.LongTensor] = None,
|
73 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
74 |
+
ner_type_ids: Optional[torch.LongTensor] = None,
|
75 |
+
task_type_ids: Optional[torch.LongTensor] = None,
|
76 |
+
position_ids: Optional[torch.LongTensor] = None,
|
77 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
78 |
+
past_key_values_length: int = 0,
|
79 |
+
) -> torch.Tensor:
|
80 |
+
if input_ids is not None:
|
81 |
+
input_shape = input_ids.size()
|
82 |
+
else:
|
83 |
+
input_shape = inputs_embeds.size()[:-1]
|
84 |
+
|
85 |
+
seq_length = input_shape[1]
|
86 |
+
|
87 |
+
if position_ids is None:
|
88 |
+
position_ids = self.position_ids[:, past_key_values_length: seq_length + past_key_values_length]
|
89 |
+
|
90 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
91 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
92 |
+
# issue #5664
|
93 |
+
if token_type_ids is None:
|
94 |
+
if hasattr(self, "token_type_ids"):
|
95 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
96 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
97 |
+
token_type_ids = buffered_token_type_ids_expanded
|
98 |
+
else:
|
99 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
100 |
+
|
101 |
+
if inputs_embeds is None:
|
102 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
103 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
104 |
+
if ner_type_ids is not None:
|
105 |
+
ner_type_embeddings = self.ner_type_embeddings(ner_type_ids)
|
106 |
+
|
107 |
+
embeddings = inputs_embeds + token_type_embeddings + ner_type_embeddings
|
108 |
+
else:
|
109 |
+
embeddings = inputs_embeds + token_type_embeddings
|
110 |
+
if self.position_embedding_type == "absolute":
|
111 |
+
position_embeddings = self.position_embeddings(position_ids)
|
112 |
+
embeddings += position_embeddings
|
113 |
+
|
114 |
+
# add `task_type_id` for ERNIE model
|
115 |
+
if self.use_task_id:
|
116 |
+
if task_type_ids is None:
|
117 |
+
task_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
118 |
+
task_type_embeddings = self.task_type_embeddings(task_type_ids)
|
119 |
+
embeddings += task_type_embeddings
|
120 |
+
|
121 |
+
embeddings = self.LayerNorm(embeddings)
|
122 |
+
embeddings = self.dropout(embeddings)
|
123 |
+
return embeddings
|
124 |
+
|
125 |
+
def _reset_parameters(self):
|
126 |
+
for p in self.parameters():
|
127 |
+
if p.dim() > 1:
|
128 |
+
normal_(p, mean=0.0, std=0.02)
|
129 |
+
|
130 |
+
def set_pretrained_weights(self, path):
|
131 |
+
pre_train_weights = torch.load(path, map_location=torch.device('cpu'))
|
132 |
+
new_weights = dict()
|
133 |
+
for layer in self.state_dict().keys():
|
134 |
+
if layer == 'position_ids':
|
135 |
+
new_weights[layer] = pre_train_weights['ernie_model.embeddings.position_ids']
|
136 |
+
elif layer == 'word_embeddings.weight':
|
137 |
+
new_weights[layer] = pre_train_weights['ernie_model.embeddings.word_embeddings.weight']
|
138 |
+
elif layer == 'position_embeddings.weight':
|
139 |
+
new_weights[layer] = pre_train_weights['ernie_model.embeddings.position_embeddings.weight']
|
140 |
+
elif layer == 'token_type_embeddings.weight':
|
141 |
+
new_weights[layer] = pre_train_weights['ernie_model.embeddings.token_type_embeddings.weight']
|
142 |
+
elif layer == 'task_type_embeddings.weight':
|
143 |
+
new_weights[layer] = pre_train_weights['ernie_model.embeddings.task_type_embeddings.weight']
|
144 |
+
elif layer == 'LayerNorm.weight':
|
145 |
+
new_weights[layer] = pre_train_weights['ernie_model.embeddings.LayerNorm.weight']
|
146 |
+
elif layer == 'LayerNorm.bias':
|
147 |
+
new_weights[layer] = pre_train_weights['ernie_model.embeddings.LayerNorm.bias']
|
148 |
+
else:
|
149 |
+
new_weights[layer] = self.state_dict()[layer]
|
150 |
+
self.load_state_dict(new_weights)
|
151 |
+
|
152 |
+
def save_weights(self, path):
|
153 |
+
torch.save(self.state_dict(), path)
|
154 |
+
|
155 |
+
def load_weights(self, path):
|
156 |
+
self.load_state_dict(torch.load(path))
|
157 |
+
|
158 |
+
|
159 |
+
# Copied from transformers.models.bert.modeling_bert.BertLayer
|
160 |
+
class StellarLayer(nn.Module):
|
161 |
+
def __init__(self, config):
|
162 |
+
super().__init__()
|
163 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
164 |
+
self.seq_len_dim = 1
|
165 |
+
self.attention = ErnieAttention(config)
|
166 |
+
self.is_decoder = config.is_decoder
|
167 |
+
self.add_cross_attention = config.add_cross_attention
|
168 |
+
if self.add_cross_attention:
|
169 |
+
if not self.is_decoder:
|
170 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
171 |
+
self.crossattention = ErnieAttention(config, position_embedding_type="absolute")
|
172 |
+
self.intermediate = ErnieIntermediate(config)
|
173 |
+
self.output = ErnieOutput(config)
|
174 |
+
|
175 |
+
def forward(
|
176 |
+
self,
|
177 |
+
hidden_states: torch.Tensor,
|
178 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
179 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
180 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
181 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
182 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
183 |
+
output_attentions: Optional[bool] = False,
|
184 |
+
) -> Tuple[torch.Tensor]:
|
185 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
186 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
187 |
+
self_attention_outputs = self.attention(
|
188 |
+
hidden_states,
|
189 |
+
attention_mask,
|
190 |
+
head_mask,
|
191 |
+
output_attentions=output_attentions,
|
192 |
+
past_key_value=self_attn_past_key_value,
|
193 |
+
)
|
194 |
+
attention_output = self_attention_outputs[0]
|
195 |
+
|
196 |
+
# if decoder, the last output is tuple of self-attn cache
|
197 |
+
if self.is_decoder:
|
198 |
+
outputs = self_attention_outputs[1:-1]
|
199 |
+
present_key_value = self_attention_outputs[-1]
|
200 |
+
else:
|
201 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
202 |
+
|
203 |
+
cross_attn_present_key_value = None
|
204 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
205 |
+
if not hasattr(self, "crossattention"):
|
206 |
+
raise ValueError(
|
207 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
208 |
+
" by setting `config.add_cross_attention=True`"
|
209 |
+
)
|
210 |
+
|
211 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
212 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
213 |
+
cross_attention_outputs = self.crossattention(
|
214 |
+
attention_output,
|
215 |
+
attention_mask,
|
216 |
+
head_mask,
|
217 |
+
encoder_hidden_states,
|
218 |
+
encoder_attention_mask,
|
219 |
+
cross_attn_past_key_value,
|
220 |
+
output_attentions,
|
221 |
+
)
|
222 |
+
attention_output = cross_attention_outputs[0]
|
223 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
224 |
+
|
225 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
226 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
227 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
228 |
+
|
229 |
+
layer_output = apply_chunking_to_forward(
|
230 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
231 |
+
)
|
232 |
+
outputs = (layer_output,) + outputs
|
233 |
+
|
234 |
+
# if decoder, return the attn key/values as the last output
|
235 |
+
if self.is_decoder:
|
236 |
+
outputs = outputs + (present_key_value,)
|
237 |
+
|
238 |
+
return outputs
|
239 |
+
|
240 |
+
def feed_forward_chunk(self, attention_output):
|
241 |
+
intermediate_output = self.intermediate(attention_output)
|
242 |
+
layer_output = self.output(intermediate_output, attention_output)
|
243 |
+
return layer_output
|
244 |
+
|
245 |
+
|
246 |
+
class StellarEncoder(nn.Module):
|
247 |
+
def __init__(self, config):
|
248 |
+
super().__init__()
|
249 |
+
self.config = config
|
250 |
+
self.layer = nn.ModuleList([StellarLayer(config) for _ in range(config.num_hidden_layers)])
|
251 |
+
self.gradient_checkpointing = False
|
252 |
+
|
253 |
+
def forward(
|
254 |
+
self,
|
255 |
+
hidden_states: torch.Tensor,
|
256 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
257 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
258 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
259 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
260 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
261 |
+
use_cache: Optional[bool] = None,
|
262 |
+
output_attentions: Optional[bool] = False,
|
263 |
+
output_hidden_states: Optional[bool] = False,
|
264 |
+
return_dict: Optional[bool] = True,
|
265 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
266 |
+
all_hidden_states = () if output_hidden_states else None
|
267 |
+
all_self_attentions = () if output_attentions else None
|
268 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
269 |
+
|
270 |
+
next_decoder_cache = () if use_cache else None
|
271 |
+
for i, layer_module in enumerate(self.layer):
|
272 |
+
if output_hidden_states:
|
273 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
274 |
+
|
275 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
276 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
277 |
+
|
278 |
+
if self.gradient_checkpointing and self.training:
|
279 |
+
|
280 |
+
if use_cache:
|
281 |
+
logger.warning(
|
282 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
283 |
+
)
|
284 |
+
use_cache = False
|
285 |
+
|
286 |
+
def create_custom_forward(module):
|
287 |
+
def custom_forward(*inputs):
|
288 |
+
return module(*inputs, past_key_value, output_attentions)
|
289 |
+
|
290 |
+
return custom_forward
|
291 |
+
|
292 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
293 |
+
create_custom_forward(layer_module),
|
294 |
+
hidden_states,
|
295 |
+
attention_mask,
|
296 |
+
layer_head_mask,
|
297 |
+
encoder_hidden_states,
|
298 |
+
encoder_attention_mask,
|
299 |
+
)
|
300 |
+
else:
|
301 |
+
layer_outputs = layer_module(
|
302 |
+
hidden_states,
|
303 |
+
attention_mask,
|
304 |
+
layer_head_mask,
|
305 |
+
encoder_hidden_states,
|
306 |
+
encoder_attention_mask,
|
307 |
+
past_key_value,
|
308 |
+
output_attentions,
|
309 |
+
)
|
310 |
+
|
311 |
+
hidden_states = layer_outputs[0]
|
312 |
+
if use_cache:
|
313 |
+
next_decoder_cache += (layer_outputs[-1],)
|
314 |
+
if output_attentions:
|
315 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
316 |
+
if self.config.add_cross_attention:
|
317 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
318 |
+
|
319 |
+
if output_hidden_states:
|
320 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
321 |
+
|
322 |
+
if not return_dict:
|
323 |
+
return tuple(
|
324 |
+
v
|
325 |
+
for v in [
|
326 |
+
hidden_states,
|
327 |
+
next_decoder_cache,
|
328 |
+
all_hidden_states,
|
329 |
+
all_self_attentions,
|
330 |
+
all_cross_attentions,
|
331 |
+
]
|
332 |
+
if v is not None
|
333 |
+
)
|
334 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
335 |
+
last_hidden_state=hidden_states,
|
336 |
+
past_key_values=next_decoder_cache,
|
337 |
+
hidden_states=all_hidden_states,
|
338 |
+
attentions=all_self_attentions,
|
339 |
+
cross_attentions=all_cross_attentions,
|
340 |
+
)
|
341 |
+
|
342 |
+
|
343 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler
|
344 |
+
class StellarPooler(nn.Module):
|
345 |
+
def __init__(self, config):
|
346 |
+
super().__init__()
|
347 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
348 |
+
self.activation = nn.Tanh()
|
349 |
+
|
350 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
351 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
352 |
+
# to the first token.
|
353 |
+
first_token_tensor = hidden_states[:, 0]
|
354 |
+
pooled_output = self.dense(first_token_tensor)
|
355 |
+
pooled_output = self.activation(pooled_output)
|
356 |
+
return pooled_output
|
357 |
+
|
358 |
+
|
359 |
+
class StellarModel(nn.Module):
|
360 |
+
"""
|
361 |
+
"""
|
362 |
+
|
363 |
+
def __init__(self, config, add_pooling_layer=True):
|
364 |
+
super().__init__()
|
365 |
+
self.config = config
|
366 |
+
self.encoder = StellarEncoder(config)
|
367 |
+
self.pooler = StellarPooler(config) if add_pooling_layer else None
|
368 |
+
# Initialize weights and apply final processing
|
369 |
+
self._reset_parameters()
|
370 |
+
|
371 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel._prune_heads
|
372 |
+
def _prune_heads(self, heads_to_prune):
|
373 |
+
"""
|
374 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
375 |
+
class PreTrainedModel
|
376 |
+
"""
|
377 |
+
for layer, heads in heads_to_prune.items():
|
378 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
379 |
+
|
380 |
+
def forward(
|
381 |
+
self,
|
382 |
+
h_input,
|
383 |
+
input_ids: Optional[torch.Tensor] = None,
|
384 |
+
attention_mask: Optional[torch.Tensor] = None,
|
385 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
386 |
+
task_type_ids: Optional[torch.Tensor] = None,
|
387 |
+
position_ids: Optional[torch.Tensor] = None,
|
388 |
+
head_mask: Optional[torch.Tensor] = None,
|
389 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
390 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
391 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
392 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
393 |
+
use_cache: Optional[bool] = None,
|
394 |
+
output_attentions: Optional[bool] = None,
|
395 |
+
output_hidden_states: Optional[bool] = None,
|
396 |
+
return_dict: Optional[bool] = None,
|
397 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
398 |
+
r"""
|
399 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
400 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
401 |
+
the model is configured as a decoder.
|
402 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
403 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
404 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
405 |
+
|
406 |
+
- 1 for tokens that are **not masked**,
|
407 |
+
- 0 for tokens that are **masked**.
|
408 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
409 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
410 |
+
|
411 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
412 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
413 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
414 |
+
use_cache (`bool`, *optional*):
|
415 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
416 |
+
`past_key_values`).
|
417 |
+
"""
|
418 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
419 |
+
output_hidden_states = (
|
420 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
421 |
+
)
|
422 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
423 |
+
|
424 |
+
if self.config.is_decoder:
|
425 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
426 |
+
else:
|
427 |
+
use_cache = False
|
428 |
+
|
429 |
+
if input_ids is not None and inputs_embeds is not None:
|
430 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
431 |
+
elif input_ids is not None:
|
432 |
+
input_shape = input_ids.size()
|
433 |
+
elif inputs_embeds is not None:
|
434 |
+
input_shape = inputs_embeds.size()[:-1]
|
435 |
+
else:
|
436 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
437 |
+
|
438 |
+
batch_size, seq_length = input_shape
|
439 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
440 |
+
|
441 |
+
# past_key_values_length
|
442 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
443 |
+
|
444 |
+
if attention_mask is None:
|
445 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
446 |
+
|
447 |
+
if token_type_ids is None:
|
448 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
449 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
450 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
451 |
+
token_type_ids = buffered_token_type_ids_expanded
|
452 |
+
else:
|
453 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
454 |
+
|
455 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
456 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
457 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
458 |
+
|
459 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
460 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
461 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
462 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
463 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
464 |
+
if encoder_attention_mask is None:
|
465 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
466 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
467 |
+
else:
|
468 |
+
encoder_extended_attention_mask = None
|
469 |
+
|
470 |
+
# Prepare head mask if needed
|
471 |
+
# 1.0 in head_mask indicate we keep the head
|
472 |
+
# attention_probs has shape bsz x n_heads x N x N
|
473 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
474 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
475 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
476 |
+
|
477 |
+
encoder_outputs = self.encoder(
|
478 |
+
h_input,
|
479 |
+
attention_mask=extended_attention_mask,
|
480 |
+
head_mask=head_mask,
|
481 |
+
encoder_hidden_states=encoder_hidden_states,
|
482 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
483 |
+
past_key_values=past_key_values,
|
484 |
+
use_cache=use_cache,
|
485 |
+
output_attentions=output_attentions,
|
486 |
+
output_hidden_states=output_hidden_states,
|
487 |
+
return_dict=return_dict,
|
488 |
+
)
|
489 |
+
sequence_output = encoder_outputs[0]
|
490 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
491 |
+
|
492 |
+
if not return_dict:
|
493 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
494 |
+
|
495 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
496 |
+
last_hidden_state=sequence_output,
|
497 |
+
pooler_output=pooled_output,
|
498 |
+
past_key_values=encoder_outputs.past_key_values,
|
499 |
+
hidden_states=encoder_outputs.hidden_states,
|
500 |
+
attentions=encoder_outputs.attentions,
|
501 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
502 |
+
)
|
503 |
+
|
504 |
+
def get_extended_attention_mask(
|
505 |
+
self, attention_mask: Tensor, input_shape: Tuple[int], device: device = None, dtype: torch.float = None
|
506 |
+
) -> Tensor:
|
507 |
+
"""
|
508 |
+
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
509 |
+
|
510 |
+
Arguments:
|
511 |
+
attention_mask (`torch.Tensor`):
|
512 |
+
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
513 |
+
input_shape (`Tuple[int]`):
|
514 |
+
The shape of the input to the model.
|
515 |
+
|
516 |
+
Returns:
|
517 |
+
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
|
518 |
+
"""
|
519 |
+
if dtype is None:
|
520 |
+
dtype = torch.float32
|
521 |
+
|
522 |
+
if not (attention_mask.dim() == 2 and self.config.is_decoder):
|
523 |
+
# show warning only if it won't be shown in `create_extended_attention_mask_for_decoder`
|
524 |
+
if device is not None:
|
525 |
+
warnings.warn(
|
526 |
+
"The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
|
527 |
+
)
|
528 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
529 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
530 |
+
if attention_mask.dim() == 3:
|
531 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
532 |
+
elif attention_mask.dim() == 2:
|
533 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
534 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
535 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
536 |
+
if self.config.is_decoder:
|
537 |
+
extended_attention_mask = ModuleUtilsMixin.create_extended_attention_mask_for_decoder(
|
538 |
+
input_shape, attention_mask, device
|
539 |
+
)
|
540 |
+
else:
|
541 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
542 |
+
else:
|
543 |
+
raise ValueError(
|
544 |
+
f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
|
545 |
+
)
|
546 |
+
|
547 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
548 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
549 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
550 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
551 |
+
# effectively the same as removing these entirely.
|
552 |
+
extended_attention_mask = extended_attention_mask.to(dtype=dtype) # fp16 compatibility
|
553 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min
|
554 |
+
return extended_attention_mask
|
555 |
+
|
556 |
+
def get_head_mask(
|
557 |
+
self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
|
558 |
+
) -> Tensor:
|
559 |
+
"""
|
560 |
+
Prepare the head mask if needed.
|
561 |
+
|
562 |
+
Args:
|
563 |
+
head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
|
564 |
+
The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
|
565 |
+
num_hidden_layers (`int`):
|
566 |
+
The number of hidden layers in the model.
|
567 |
+
is_attention_chunked: (`bool`, *optional*, defaults to `False`):
|
568 |
+
Whether or not the attentions scores are computed by chunks or not.
|
569 |
+
|
570 |
+
Returns:
|
571 |
+
`torch.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with
|
572 |
+
`[None]` for each layer.
|
573 |
+
"""
|
574 |
+
if head_mask is not None:
|
575 |
+
head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
|
576 |
+
if is_attention_chunked is True:
|
577 |
+
head_mask = head_mask.unsqueeze(-1)
|
578 |
+
else:
|
579 |
+
head_mask = [None] * num_hidden_layers
|
580 |
+
|
581 |
+
return head_mask
|
582 |
+
|
583 |
+
def _reset_parameters(self):
|
584 |
+
r"""Initiate parameters in the transformer model."""
|
585 |
+
for p in self.parameters():
|
586 |
+
if p.dim() > 1:
|
587 |
+
normal_(p, mean=0.0, std=self.config.initializer_range)
|
588 |
+
|
589 |
+
def save_weights(self, path):
|
590 |
+
torch.save(self.state_dict(), path)
|
591 |
+
|
592 |
+
def load_weights(self, path):
|
593 |
+
self.load_state_dict(torch.load(path))
|
594 |
+
|
595 |
+
|
596 |
+
class TAAS(PreTrainedModel):
|
597 |
+
def __init__(self, config, return_last_hidden_state=False):
|
598 |
+
super(TAAS, self).__init__(config)
|
599 |
+
|
600 |
+
"""
|
601 |
+
:param d_model: d_k = d_v = d_model/nhead = 64, 模型中向量的维度,论文默认值为 512
|
602 |
+
:param nhead: 多头注意力机制中多头的数量,论文默认为值 8
|
603 |
+
:param num_encoder_layers: encoder堆叠的数量,也就是论文中的N,论文默认值为6
|
604 |
+
:param num_decoder_layers: decoder堆叠的数量,也就是论文中的N,论文默认值为6
|
605 |
+
:param dim_feedforward: 全连接中向量的维度,论文默认值为 2048
|
606 |
+
:param dropout: 丢弃率,论文中的默认值为 0.1
|
607 |
+
"""
|
608 |
+
|
609 |
+
self.config = deepcopy(config)
|
610 |
+
self.return_last_hidden_state = return_last_hidden_state
|
611 |
+
self.dropout = nn.Dropout(self.config.hidden_dropout_prob)
|
612 |
+
# ================ StellarEmbedding =====================
|
613 |
+
self.embedding = StellarEmbedding(self.config)
|
614 |
+
self.embedding_weights = Parameter(torch.ones(1, 1, self.config.hidden_size))
|
615 |
+
# ================ StellarModel =====================
|
616 |
+
self.stellar_config = deepcopy(config)
|
617 |
+
self.stellar_model = StellarModel(self.stellar_config)
|
618 |
+
# ================ TranSAGE =====================
|
619 |
+
# self.transage_layer = TranSAGE()
|
620 |
+
self.graphormer = Graphormer3D()
|
621 |
+
# ================ 解码部分 =====================
|
622 |
+
self.encoder_config = deepcopy(config)
|
623 |
+
self.encoder_config.num_hidden_layers = 1
|
624 |
+
self.encoder = StellarModel(self.encoder_config)
|
625 |
+
self.encoder_out_dim = self.encoder_config.hidden_size
|
626 |
+
# ================ GC任务部分 =====================
|
627 |
+
self.gc_trans = nn.Linear(self.encoder_out_dim, 16 * 33, bias=True)
|
628 |
+
# ================ MLM任务部分 =====================
|
629 |
+
self.cls = ErnieForMaskedLM(self.stellar_config).cls
|
630 |
+
# ================ alias任务部分 =====================
|
631 |
+
self.down_hidden_dim = 512
|
632 |
+
self.down_kernel_num = 128
|
633 |
+
self.alias_trans = nn.Linear(self.encoder_out_dim, self.down_hidden_dim, bias=True)
|
634 |
+
self.alias_trans2 = torch.nn.Conv2d(1, self.down_kernel_num, (2, self.down_hidden_dim), stride=1, bias=True)
|
635 |
+
self.alias_layer = nn.Linear(self.down_kernel_num * 5, 2 * 5, bias=True)
|
636 |
+
# ================ AOI任务部分 =====================
|
637 |
+
self.aoi_trans = nn.Linear(self.encoder_out_dim, self.down_hidden_dim, bias=True)
|
638 |
+
self.aoi_trans2 = torch.nn.Conv2d(1, self.down_kernel_num, (2, self.down_hidden_dim), stride=1, bias=True)
|
639 |
+
self.aoi_layer = nn.Linear(self.down_kernel_num * 5, 2 * 5, bias=True)
|
640 |
+
|
641 |
+
# ================ HTC任务部分 =====================
|
642 |
+
self.htc_trans = nn.Linear(self.encoder_out_dim, 5 * 100, bias=True)
|
643 |
+
|
644 |
+
# ================ NER任务部分 =====================
|
645 |
+
# self.ner_model = torch.load('ner.pth')
|
646 |
+
self.ner_model = NER_model(vocab_size=11)
|
647 |
+
# self.ner_model.load_state_dict(torch.load('ner.pth'))
|
648 |
+
|
649 |
+
|
650 |
+
def forward(self,
|
651 |
+
input_ids,
|
652 |
+
attention_mask,
|
653 |
+
token_type_ids,
|
654 |
+
node_position_ids,
|
655 |
+
spatial_pos, in_degree, out_degree, edge_type_matrix, edge_input,
|
656 |
+
prov_city_mask: Optional[torch.Tensor] = None,
|
657 |
+
sequence_len=6,
|
658 |
+
labels: Optional[torch.Tensor] = None
|
659 |
+
):
|
660 |
+
"""
|
661 |
+
:param input_ids: [sequence_len * batch_size, src_len]
|
662 |
+
:param attention_mask: [sequence_len * batch_size, src_len]
|
663 |
+
:param token_type_ids: [sequence_len * batch_size, src_len]
|
664 |
+
:param sequence_len: int
|
665 |
+
:param labels:
|
666 |
+
:param is_eval: bool
|
667 |
+
:return:
|
668 |
+
"""
|
669 |
+
batch_size_input = int(input_ids.shape[0] / sequence_len)
|
670 |
+
|
671 |
+
embedding_output = self.embedding(input_ids=input_ids, token_type_ids=token_type_ids)
|
672 |
+
|
673 |
+
stellar_predictions = self.stellar_model(embedding_output,
|
674 |
+
input_ids=input_ids,
|
675 |
+
token_type_ids=token_type_ids,
|
676 |
+
attention_mask=attention_mask)
|
677 |
+
last_hidden_state = stellar_predictions[0].contiguous().view(batch_size_input, sequence_len, -1,
|
678 |
+
self.encoder_out_dim)
|
679 |
+
pooler_output = stellar_predictions[1].contiguous().view(batch_size_input, sequence_len, self.encoder_out_dim)
|
680 |
+
h_ = self.graphormer(pooler_output, spatial_pos, in_degree, out_degree, edge_type_matrix, edge_input, node_position_ids)
|
681 |
+
h_ = h_.unsqueeze(2)
|
682 |
+
new_hidden_state = torch.cat((h_, last_hidden_state[:, :, 1:, :]), dim=2)
|
683 |
+
new_hidden_state = new_hidden_state.contiguous().view(batch_size_input * sequence_len, -1, self.encoder_out_dim)
|
684 |
+
encoder_outputs = self.encoder(new_hidden_state,
|
685 |
+
input_ids=input_ids,
|
686 |
+
token_type_ids=token_type_ids,
|
687 |
+
attention_mask=attention_mask)
|
688 |
+
final_hidden_state = encoder_outputs[0]
|
689 |
+
final_pooler_output = encoder_outputs[1].contiguous().view(batch_size_input, sequence_len, self.encoder_out_dim)
|
690 |
+
prediction_scores = self.cls(final_hidden_state) # 用于 MLM 任务
|
691 |
+
|
692 |
+
gc_layer_out = self.gc_trans(final_pooler_output)
|
693 |
+
gc_layer_out = gc_layer_out.contiguous().view(-1, 16)
|
694 |
+
|
695 |
+
htc_layer_out = self.htc_trans(final_pooler_output)
|
696 |
+
htc_layer_out = htc_layer_out.contiguous().view(-1, 100)
|
697 |
+
|
698 |
+
|
699 |
+
# MLM loss
|
700 |
+
if labels is not None:
|
701 |
+
# masked_lm_loss = None
|
702 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
703 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
704 |
+
return [gc_layer_out, masked_lm_loss, prediction_scores, htc_layer_out]
|
705 |
+
|
706 |
+
if self.return_last_hidden_state:
|
707 |
+
return final_pooler_output, pooler_output
|
708 |
+
|
709 |
+
return gc_layer_out, final_pooler_output, final_hidden_state, prediction_scores, last_hidden_state, htc_layer_out
|
710 |
+
|
711 |
+
def get_htc_code(self, htc_layer_out):
|
712 |
+
htc_loss_fct = HTCLoss(device=self.device, reduction='mean')
|
713 |
+
htc_pred = htc_loss_fct.get_htc_code(htc_layer_out)
|
714 |
+
return htc_pred
|
715 |
+
|
716 |
+
def decode_htc_code_2_chn(self, htc_pred):
|
717 |
+
arr = htc_pred
|
718 |
+
with open(remap_code_2_chn_file_path, 'rb') as fr:
|
719 |
+
remap_code_2_chn = pickle.loads(fr.read())
|
720 |
+
return remap_code_2_chn['{:02d}{:02d}{:02d}{:01d}{:02d}'.format(arr[0], arr[1], arr[2], arr[3], arr[4])]
|
721 |
+
|
722 |
+
# Address Standarization
|
723 |
+
def addr_standardize(self, address):
|
724 |
+
tokenizer = BertTokenizer.from_pretrained('nghuyong/ernie-3.0-base-zh')
|
725 |
+
encoded_input = tokenizer(address, return_tensors='pt', padding='max_length',
|
726 |
+
truncation=True, # 超过最大长度截断
|
727 |
+
max_length=60,
|
728 |
+
add_special_tokens=True).to(self.device)
|
729 |
+
word_ids = encoded_input['input_ids']
|
730 |
+
attention_mask = encoded_input['attention_mask']
|
731 |
+
|
732 |
+
length = len(word_ids)
|
733 |
+
node_position_ids = torch.tensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
|
734 |
+
spatial_pos = torch.LongTensor(np.zeros((length, 1, 1), dtype=np.int64)).to(self.device)
|
735 |
+
in_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
|
736 |
+
out_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
|
737 |
+
edge_type_matrix = torch.LongTensor(8*np.ones((length, 1, 1), dtype=np.int64)).to(self.device)
|
738 |
+
edge_input = torch.LongTensor(8*np.ones((length, 1, 1, 1), dtype=np.int64)).to(self.device)
|
739 |
+
|
740 |
+
logits = self.ner_model(**encoded_input,
|
741 |
+
node_position_ids = node_position_ids,
|
742 |
+
spatial_pos = spatial_pos,
|
743 |
+
in_degree = in_degree,
|
744 |
+
out_degree = out_degree,
|
745 |
+
edge_type_matrix = edge_type_matrix,
|
746 |
+
edge_input = edge_input,)[0]
|
747 |
+
output = []
|
748 |
+
ner_labels = torch.argmax(logits, dim=-1)
|
749 |
+
if len(address) == 1:
|
750 |
+
ner_labels = ner_labels.unsqueeze(0)
|
751 |
+
for i in range(len(address)):
|
752 |
+
ner_label = ner_labels[i]
|
753 |
+
word_id = word_ids[i]
|
754 |
+
# cut padding
|
755 |
+
idx = torch.where(attention_mask[i]>0)
|
756 |
+
ner_label = ner_label[idx][1:-1]
|
757 |
+
word_id = word_id[idx][1:-1]
|
758 |
+
# cut other info
|
759 |
+
idx1 = torch.where(ner_label != 0)
|
760 |
+
ner_label = ner_label[idx1].tolist()
|
761 |
+
word_id = word_id[idx1].tolist()
|
762 |
+
# add house info
|
763 |
+
if 8 in ner_label:
|
764 |
+
idx2 = ''.join([str(i) for i in ner_label]).rfind('8')
|
765 |
+
word_id.insert(idx2+1, 2770)
|
766 |
+
ner_label.insert(idx2+1, 8)
|
767 |
+
if 9 in ner_label:
|
768 |
+
idx2 = ''.join([str(i) for i in ner_label]).rfind('9')
|
769 |
+
word_id.insert(idx2+1, 269)
|
770 |
+
word_id.insert(idx2+2, 183)
|
771 |
+
ner_label.insert(idx2+1, 9)
|
772 |
+
ner_label.insert(idx2+2, 9)
|
773 |
+
if 10 in ner_label:
|
774 |
+
idx2 = ''.join([str(i) for i in ner_label]).rfind('10')
|
775 |
+
word_id.insert(idx2+1, 485)
|
776 |
+
ner_label.insert(idx2+1, 10)
|
777 |
+
|
778 |
+
output.append(tokenizer.decode(word_id).replace(' ', ''))
|
779 |
+
|
780 |
+
return output
|
781 |
+
|
782 |
+
# Address Entity Tokenization
|
783 |
+
def addr_entity(self, address):
|
784 |
+
tokenizer = BertTokenizer.from_pretrained('nghuyong/ernie-3.0-base-zh')
|
785 |
+
encoded_input = tokenizer(address, return_tensors='pt', padding='max_length',
|
786 |
+
truncation=True, # 超过最大长度截断
|
787 |
+
max_length=60,
|
788 |
+
add_special_tokens=True).to(self.device)
|
789 |
+
word_ids = encoded_input['input_ids']
|
790 |
+
attention_mask = encoded_input['attention_mask']
|
791 |
+
|
792 |
+
length = len(word_ids)
|
793 |
+
node_position_ids = torch.tensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
|
794 |
+
spatial_pos = torch.LongTensor(np.zeros((length, 1, 1), dtype=np.int64)).to(self.device)
|
795 |
+
in_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
|
796 |
+
out_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
|
797 |
+
edge_type_matrix = torch.LongTensor(8*np.ones((length, 1, 1), dtype=np.int64)).to(self.device)
|
798 |
+
edge_input = torch.LongTensor(8*np.ones((length, 1, 1, 1), dtype=np.int64)).to(self.device)
|
799 |
+
|
800 |
+
logits = self.ner_model(**encoded_input,
|
801 |
+
node_position_ids = node_position_ids,
|
802 |
+
spatial_pos = spatial_pos,
|
803 |
+
in_degree = in_degree,
|
804 |
+
out_degree = out_degree,
|
805 |
+
edge_type_matrix = edge_type_matrix,
|
806 |
+
edge_input = edge_input,)[0]
|
807 |
+
|
808 |
+
ner_labels = torch.argmax(logits, dim=-1)
|
809 |
+
if len(address) == 1:
|
810 |
+
ner_labels = ner_labels.unsqueeze(0)
|
811 |
+
|
812 |
+
output = []
|
813 |
+
tmp = {1:'省', 2:'市', 3:'区', 4:'街道/镇', 5:'道路', 6:'道路号', 7:'poi', 8:'楼栋号', 9:'单元号', 10:'门牌号'}
|
814 |
+
for i in range(len(address)):
|
815 |
+
ner_label = ner_labels[i]
|
816 |
+
word_id = word_ids[i]
|
817 |
+
idx = torch.where(attention_mask[i]>0)
|
818 |
+
ner_label = ner_label[idx][1:-1]
|
819 |
+
word_id = word_id[idx][1:-1]
|
820 |
+
|
821 |
+
addr_dict = {}
|
822 |
+
addr_dict = dict.fromkeys(tmp.values(),'无')
|
823 |
+
for j in range(1,11):
|
824 |
+
idx = torch.where(ner_label == j)
|
825 |
+
addr_dict[tmp[j]] = ''.join(tokenizer.decode(word_id[idx]).replace(' ',''))
|
826 |
+
|
827 |
+
output.append(deepcopy(addr_dict))
|
828 |
+
|
829 |
+
return output
|
830 |
+
|
831 |
+
# House Info Extraction
|
832 |
+
def house_info(self, address):
|
833 |
+
tokenizer = BertTokenizer.from_pretrained('nghuyong/ernie-3.0-base-zh')
|
834 |
+
encoded_input = tokenizer(address, return_tensors='pt', padding='max_length',
|
835 |
+
truncation=True, # 超过最大长度截断
|
836 |
+
max_length=60,
|
837 |
+
add_special_tokens=True).to(self.device)
|
838 |
+
word_ids = encoded_input['input_ids']
|
839 |
+
attention_mask = encoded_input['attention_mask']
|
840 |
+
|
841 |
+
length = len(word_ids)
|
842 |
+
node_position_ids = torch.tensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
|
843 |
+
spatial_pos = torch.LongTensor(np.zeros((length, 1, 1), dtype=np.int64)).to(self.device)
|
844 |
+
in_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
|
845 |
+
out_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
|
846 |
+
edge_type_matrix = torch.LongTensor(8*np.ones((length, 1, 1), dtype=np.int64)).to(self.device)
|
847 |
+
edge_input = torch.LongTensor(8*np.ones((length, 1, 1, 1), dtype=np.int64)).to(self.device)
|
848 |
+
|
849 |
+
logits = self.ner_model(**encoded_input,
|
850 |
+
node_position_ids = node_position_ids,
|
851 |
+
spatial_pos = spatial_pos,
|
852 |
+
in_degree = in_degree,
|
853 |
+
out_degree = out_degree,
|
854 |
+
edge_type_matrix = edge_type_matrix,
|
855 |
+
edge_input = edge_input,)[0]
|
856 |
+
|
857 |
+
ner_labels = torch.argmax(logits, dim=-1)
|
858 |
+
if len(address) == 1:
|
859 |
+
ner_labels = ner_labels.unsqueeze(0)
|
860 |
+
output = []
|
861 |
+
for i in range(len(address)):
|
862 |
+
ner_label = ner_labels[i]
|
863 |
+
word_id = word_ids[i]
|
864 |
+
idx = torch.where(attention_mask[i]>0)
|
865 |
+
ner_label = ner_label[idx][1:-1]
|
866 |
+
word_id = word_id[idx][1:-1]
|
867 |
+
|
868 |
+
building = []
|
869 |
+
unit = []
|
870 |
+
room = []
|
871 |
+
for j in range(len(ner_label)):
|
872 |
+
if ner_label[j] == 8:
|
873 |
+
building.append(word_id[j])
|
874 |
+
elif ner_label[j] == 9:
|
875 |
+
unit.append(word_id[j])
|
876 |
+
elif ner_label[j] == 10:
|
877 |
+
room.append(word_id[j])
|
878 |
+
|
879 |
+
output.append({'楼栋':tokenizer.decode(building).replace(' ',''), '单元':tokenizer.decode(unit).replace(' ',''),
|
880 |
+
'门牌号': tokenizer.decode(room).replace(' ','')})
|
881 |
+
return output
|
882 |
+
|
883 |
+
|
884 |
+
# Address Completion
|
885 |
+
def addr_complet(self, address):
|
886 |
+
tokenizer = BertTokenizer.from_pretrained('nghuyong/ernie-3.0-base-zh')
|
887 |
+
encoded_input = tokenizer(address, return_tensors='pt', padding='max_length',
|
888 |
+
truncation=True, # 超过最大长度截断
|
889 |
+
max_length=60,
|
890 |
+
add_special_tokens=True).to(self.device)
|
891 |
+
word_ids = encoded_input['input_ids']
|
892 |
+
attention_mask = encoded_input['attention_mask']
|
893 |
+
|
894 |
+
length = len(word_ids)
|
895 |
+
node_position_ids = torch.tensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
|
896 |
+
spatial_pos = torch.LongTensor(np.zeros((length, 1, 1), dtype=np.int64)).to(self.device)
|
897 |
+
in_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
|
898 |
+
out_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
|
899 |
+
edge_type_matrix = torch.LongTensor(8*np.ones((length, 1, 1), dtype=np.int64)).to(self.device)
|
900 |
+
edge_input = torch.LongTensor(8*np.ones((length, 1, 1, 1), dtype=np.int64)).to(self.device)
|
901 |
+
|
902 |
+
logits = self.ner_model(**encoded_input,
|
903 |
+
node_position_ids = node_position_ids,
|
904 |
+
spatial_pos = spatial_pos,
|
905 |
+
in_degree = in_degree,
|
906 |
+
out_degree = out_degree,
|
907 |
+
edge_type_matrix = edge_type_matrix,
|
908 |
+
edge_input = edge_input,)[0]
|
909 |
+
|
910 |
+
ner_labels = torch.argmax(logits, dim=-1)
|
911 |
+
if len(address) == 1:
|
912 |
+
ner_labels = ner_labels.unsqueeze(0)
|
913 |
+
if isinstance(address, list):
|
914 |
+
address = address[0]
|
915 |
+
|
916 |
+
# HTC result
|
917 |
+
g2ptl_model = AutoModel.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True)
|
918 |
+
g2ptl_model.eval()
|
919 |
+
g2ptl_output = g2ptl_model(**encoded_input)
|
920 |
+
htc_layer_out = g2ptl_output.htc_layer_out
|
921 |
+
arr = g2ptl_model.get_htc_code(htc_layer_out)
|
922 |
+
htc_pred = '{:02d}{:02d}{:02d}{:01d}{:02d}'.format(arr[0], arr[1], arr[2], arr[3], arr[4])
|
923 |
+
with open('remap_code_2_chn_with_all_htc.pkl', 'rb') as fr:
|
924 |
+
remap_code_2_chn = pickle.loads(fr.read())
|
925 |
+
|
926 |
+
try:
|
927 |
+
htc_list = remap_code_2_chn[htc_pred][-1]
|
928 |
+
except:
|
929 |
+
return address
|
930 |
+
|
931 |
+
# revise address level of four city
|
932 |
+
if htc_list[0] in ['北京','上海','重庆','天津']:
|
933 |
+
htc_list = htc_list[1:]
|
934 |
+
htc_list.append('')
|
935 |
+
|
936 |
+
idx = torch.where(attention_mask>0)
|
937 |
+
ner_label = ner_labels[idx][1:-1].cpu().numpy().tolist()
|
938 |
+
word_id = word_ids[idx][1:-1]
|
939 |
+
|
940 |
+
for i in range(1,5):
|
941 |
+
# judge the lacked address unit
|
942 |
+
if i not in ner_label:
|
943 |
+
if i == 1:
|
944 |
+
address = htc_list[0] + address
|
945 |
+
ner_label = [1] * len(htc_list[0]) + ner_label
|
946 |
+
else :
|
947 |
+
# find the insert position
|
948 |
+
idx = 0
|
949 |
+
for j in range(len(ner_label)):
|
950 |
+
if ner_label[j] > i:
|
951 |
+
idx = j
|
952 |
+
break
|
953 |
+
address = address[:idx] + htc_list[i-1] + address[idx:]
|
954 |
+
ner_label = ner_label[:idx] + [i] * len(htc_list[i-1]) + ner_label[idx:]
|
955 |
+
|
956 |
+
return address
|
957 |
+
|
958 |
+
# Geo-locating from text to geospatial
|
959 |
+
def geolocate(self, address):
|
960 |
+
g2ptl_model = AutoModel.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True)
|
961 |
+
tokenizer = AutoTokenizer.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True)
|
962 |
+
encoded_input = tokenizer(address, return_tensors='pt')
|
963 |
+
|
964 |
+
g2ptl_model.eval()
|
965 |
+
output = g2ptl_model(**encoded_input)
|
966 |
+
geo_labels = torch.argmax(output.gc_layer_out, dim=-1)
|
967 |
+
output = [s2_label_dict_remap[int(i)] for i in geo_labels]
|
968 |
+
|
969 |
+
return 's2网格化结果:' + ''.join(output)
|
970 |
+
|
971 |
+
# Pick-up Estimation Time of Arrival
|
972 |
+
def pickup_ETA(self, address):
|
973 |
+
print('Users can get the address embeddings using model.encode(address) and feed them to your own ETA model.')
|
974 |
+
|
975 |
+
# Pick-up and Delivery Route Prediction
|
976 |
+
def route_predict(self, route_data):
|
977 |
+
print('Users can get the address embeddings using model.encode(address) and feed them to your own Route Prediction model.')
|
978 |
+
|
979 |
+
# Address embeddings
|
980 |
+
def encode(self, address):
|
981 |
+
tokenizer = AutoTokenizer.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True)
|
982 |
+
g2ptl_model = AutoModel.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True)
|
983 |
+
encoded_input = tokenizer(address, return_tensors='pt', padding='max_length',
|
984 |
+
truncation=True, # 超过最大长度截断
|
985 |
+
max_length=60,
|
986 |
+
add_special_tokens=True)
|
987 |
+
g2ptl_model.eval()
|
988 |
+
output = g2ptl_model(**encoded_input)
|
989 |
+
|
990 |
+
return output.final_hidden_state
|
991 |
+
|
992 |
+
def _reset_parameters(self):
|
993 |
+
for p in self.parameters():
|
994 |
+
if p.dim() > 1:
|
995 |
+
xavier_uniform_(p)
|
996 |
+
|
997 |
+
def generate_square_subsequent_mask(self, sz):
|
998 |
+
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
|
999 |
+
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
|
1000 |
+
return mask # [sz,sz]
|
1001 |
+
|
1002 |
+
def save_weights(self, path):
|
1003 |
+
torch.save(self.state_dict(), path)
|
1004 |
+
|
1005 |
+
def load_weights(self, path):
|
1006 |
+
self.load_state_dict(torch.load(path, map_location=torch.device('cpu')), False)
|
1007 |
+
|
1008 |
+
def set_pretrained_weights(self, path):
|
1009 |
+
pre_train_weights = torch.load(path, map_location=torch.device('cpu'))
|
1010 |
+
new_weights = dict()
|
1011 |
+
|
1012 |
+
for layer in self.state_dict().keys():
|
1013 |
+
if layer == 'embedding.position_ids':
|
1014 |
+
new_weights[layer] = pre_train_weights['ernie_model.embeddings.position_ids']
|
1015 |
+
elif layer == 'embedding.word_embeddings.weight':
|
1016 |
+
new_weights[layer] = pre_train_weights['ernie_model.embeddings.word_embeddings.weight']
|
1017 |
+
elif layer == 'embedding.position_embeddings.weight':
|
1018 |
+
new_weights[layer] = pre_train_weights['ernie_model.embeddings.position_embeddings.weight']
|
1019 |
+
elif layer == 'embedding.token_type_embeddings.weight':
|
1020 |
+
new_weights[layer] = pre_train_weights['ernie_model.embeddings.token_type_embeddings.weight']
|
1021 |
+
elif layer == 'embedding.task_type_embeddings.weight':
|
1022 |
+
new_weights[layer] = pre_train_weights['ernie_model.embeddings.task_type_embeddings.weight']
|
1023 |
+
elif layer == 'embedding.LayerNorm.weight':
|
1024 |
+
new_weights[layer] = pre_train_weights['ernie_model.embeddings.LayerNorm.weight']
|
1025 |
+
elif layer == 'embedding.LayerNorm.bias':
|
1026 |
+
new_weights[layer] = pre_train_weights['ernie_model.embeddings.LayerNorm.bias']
|
1027 |
+
elif 'stellar_model' in layer:
|
1028 |
+
new_weights[layer] = pre_train_weights[layer.replace('stellar_model', 'ernie_model')]
|
1029 |
+
elif layer in pre_train_weights.keys():
|
1030 |
+
new_weights[layer] = pre_train_weights[layer]
|
1031 |
+
else:
|
1032 |
+
new_weights[layer] = self.state_dict()[layer]
|
1033 |
+
|
1034 |
+
self.load_state_dict(new_weights)
|
ner_model.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! python3
|
2 |
+
# -*- encoding: utf-8 -*-
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from typing import Optional
|
7 |
+
from transformers import AutoModel
|
8 |
+
from torch.nn.init import xavier_uniform_
|
9 |
+
|
10 |
+
def cal_ner_acc(y, y_hat):
|
11 |
+
if len(y) == 0:
|
12 |
+
return 0, 1
|
13 |
+
y,y_hat = y.cpu().numpy(), y_hat.cpu().numpy()
|
14 |
+
|
15 |
+
acc_cnt, len_cnt = 0, 0
|
16 |
+
for i in range(len(y)):
|
17 |
+
if y[i] <= 7 and y_hat[i] <= 7:
|
18 |
+
len_cnt += 1
|
19 |
+
if y[i] == y_hat[i]:
|
20 |
+
acc_cnt += 1
|
21 |
+
|
22 |
+
return acc_cnt, len_cnt
|
23 |
+
|
24 |
+
|
25 |
+
class NER_model(nn.Module):
|
26 |
+
def __init__(self, vocab_size):
|
27 |
+
super(NER_model, self).__init__()
|
28 |
+
|
29 |
+
while True:
|
30 |
+
try:
|
31 |
+
self.g2ptl = AutoModel.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True)
|
32 |
+
break
|
33 |
+
except:
|
34 |
+
continue
|
35 |
+
"""
|
36 |
+
Ner head
|
37 |
+
"""
|
38 |
+
# print('model loaded.')
|
39 |
+
self.dropout = nn.Dropout(p = 0.1, inplace = False)
|
40 |
+
self.linear1 = nn.Linear(in_features=768, out_features=128, bias=True)
|
41 |
+
self.linear2 = nn.Linear(in_features=128, out_features=vocab_size, bias=True)
|
42 |
+
# self.classifier = nn.Linear(in_features=768, out_features=vocab_size, bias=True)
|
43 |
+
# self.cls = ErnieForMaskedLM.from_pretrained('nghuyong/ernie-3.0-base-zh').cls
|
44 |
+
#self._reset_parameters()
|
45 |
+
|
46 |
+
def forward(self,
|
47 |
+
input_ids,
|
48 |
+
attention_mask,
|
49 |
+
token_type_ids,
|
50 |
+
node_position_ids,spatial_pos, in_degree, out_degree, edge_type_matrix, edge_input,
|
51 |
+
prov_city_mask: Optional[torch.Tensor] = None,
|
52 |
+
sequence_len=6,
|
53 |
+
labels: Optional[torch.Tensor] = None
|
54 |
+
):
|
55 |
+
output= self.g2ptl(input_ids, attention_mask, token_type_ids, node_position_ids, spatial_pos,
|
56 |
+
in_degree,
|
57 |
+
out_degree,
|
58 |
+
edge_type_matrix,
|
59 |
+
edge_input )
|
60 |
+
|
61 |
+
pooler_output_embedding = output.final_hidden_state
|
62 |
+
sequence_output = pooler_output_embedding.squeeze()
|
63 |
+
# Input的是Bert输出的token sequence的embedding,而不是pooler的embedding
|
64 |
+
sequence_output = self.dropout(sequence_output)
|
65 |
+
linear_out = self.linear1(sequence_output)
|
66 |
+
logits = self.linear2(self.dropout(linear_out))
|
67 |
+
# logits = self.classifier(sequence_output)
|
68 |
+
|
69 |
+
loss = None
|
70 |
+
if labels is not None:
|
71 |
+
loss_fct = CrossEntropyLoss()
|
72 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
73 |
+
|
74 |
+
return [logits, loss]
|
75 |
+
|
76 |
+
def _reset_parameters(self):
|
77 |
+
for p in self.parameters():
|
78 |
+
if p.dim() > 1:
|
79 |
+
xavier_uniform_(p)
|
80 |
+
|
81 |
+
def save_weights(self, path):
|
82 |
+
torch.save(self.state_dict(), path)
|
83 |
+
|
84 |
+
def load_weights(self, path):
|
85 |
+
self.load_state_dict(torch.load(path, map_location=torch.device('cpu')), False)
|
86 |
+
|
87 |
+
|
88 |
+
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:638e1ec05232c1b84b82a392c9764a14bde2847ddba3df1c3af616bc1a97056b
|
3 |
+
size 1667670121
|
remap_code_2_chn.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e998605c058964cd9cead64edeaecfadef6bd754c025c28b1bacb5af5fe02f3
|
3 |
+
size 4159356
|
remap_code_2_chn_with_all_htc.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e48a8aae60636c7f9c752b6644025122b249443d12deca40ab47f3e290ca677d
|
3 |
+
size 6236213
|
requirements.txt
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
pandas
|
3 |
+
tensorboard
|
4 |
+
tqdm==4.64.1
|
5 |
+
transformers==4.25.1
|
6 |
+
utils
|
7 |
+
datasets
|
8 |
+
oss2
|
9 |
+
fairseq
|
10 |
+
tensorboardX
|
11 |
+
rouge
|
12 |
+
matplotlib
|
13 |
+
seaborn
|
14 |
+
SentencePiece
|
15 |
+
ujson
|
16 |
+
eas_prediction
|
17 |
+
openpyxl
|
18 |
+
s2sphere
|
19 |
+
s2cell
|
20 |
+
tensorboard
|
21 |
+
onnx
|
22 |
+
onnxsim
|
23 |
+
|
24 |
+
# lightseq
|
25 |
+
# onnxruntime
|
26 |
+
# tqdm
|
27 |
+
# torch==1.13.1
|
28 |
+
# transformers==4.27.4
|
29 |
+
# datasets
|
30 |
+
# fairseq
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"do_basic_tokenize": true,
|
4 |
+
"do_lower_case": true,
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"model_max_length": 1000000000000000019884624838656,
|
7 |
+
"never_split": null,
|
8 |
+
"pad_token": "[PAD]",
|
9 |
+
"sep_token": "[SEP]",
|
10 |
+
"special_tokens_map_file": null,
|
11 |
+
"strip_accents": null,
|
12 |
+
"tokenize_chinese_chars": true,
|
13 |
+
"tokenizer_class": "BertTokenizer",
|
14 |
+
"unk_token": "[UNK]"
|
15 |
+
}
|
utils.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
# @File : utils.py
|
5 |
+
# @Author : 刘建林(霜旻)
|
6 |
+
# @Email : [email protected]
|
7 |
+
# @Time : 2022/10/27 下午8:52
|
8 |
+
"""
|
9 |
+
import operator
|
10 |
+
import pickle
|
11 |
+
import numpy as np
|
12 |
+
import pandas as pd
|
13 |
+
|
14 |
+
s2_label_dict = {
|
15 |
+
'0': 0,
|
16 |
+
'1': 1,
|
17 |
+
'2': 2,
|
18 |
+
'3': 3,
|
19 |
+
'4': 4,
|
20 |
+
'5': 5,
|
21 |
+
'6': 6,
|
22 |
+
'7': 7,
|
23 |
+
'8': 8,
|
24 |
+
'9': 9,
|
25 |
+
'a': 10,
|
26 |
+
'b': 11,
|
27 |
+
'c': 12,
|
28 |
+
'd': 13,
|
29 |
+
'e': 14,
|
30 |
+
'f': 15
|
31 |
+
}
|
32 |
+
s2_label_decode_dict = {v: k for k, v in s2_label_dict.items()}
|
33 |
+
|
34 |
+
s2_weights = [0.025, 0.025, 0.025,
|
35 |
+
0.025, 0.025, 0.025,
|
36 |
+
0.025, 0.025, 0.025,
|
37 |
+
0.0325, 0.0325, 0.0325,
|
38 |
+
0.035, 0.035, 0.035,
|
39 |
+
0.0375, 0.0375, 0.0375,
|
40 |
+
0.04, 0.04, 0.04,
|
41 |
+
0.0425, 0.0425, 0.0425,
|
42 |
+
0.045, 0.045, 0.0475,
|
43 |
+
0.025, 0.025, 0.025,
|
44 |
+
0.0, 0.0, 0.0]
|
45 |
+
|
46 |
+
def generate_s2_index(s2_label):
|
47 |
+
result = [0 for _ in range(33)]
|
48 |
+
for i, char_ in enumerate(s2_label):
|
49 |
+
result[i] = s2_label_dict[char_]
|
50 |
+
return result
|
51 |
+
|
52 |
+
|
53 |
+
def decode_s2(x):
|
54 |
+
result = []
|
55 |
+
for i in x:
|
56 |
+
result.append(s2_label_decode_dict[i])
|
57 |
+
return ''.join(result)
|
58 |
+
|
59 |
+
|
60 |
+
def sample_csv2pkl(csv_path, pkl_path):
|
61 |
+
# df = pd.read_csv('/Users/liujianlin/odps_clt_release_64/bin/addr6node_small1.csv', sep='^', encoding="utf_8_sig")
|
62 |
+
df = pd.read_csv(csv_path, sep='^', encoding="utf_8_sig")
|
63 |
+
# print(df)
|
64 |
+
data = []
|
65 |
+
for index, row in df.iterrows():
|
66 |
+
node_s = []
|
67 |
+
label = []
|
68 |
+
node1 = [row['node_t1'], row['poi_address_mask1'], row['node1'], generate_s2_index(row['node1'])]
|
69 |
+
node2 = [row['node_t2'], row['poi_address_mask2'], row['node2'], generate_s2_index(row['node2'])]
|
70 |
+
node3 = [row['node_t3'], row['poi_address_mask3'], row['node3'], generate_s2_index(row['node3'])]
|
71 |
+
node4 = [row['node_t4'], row['poi_address_mask4'], row['node4'], generate_s2_index(row['node4'])]
|
72 |
+
node5 = [row['node_t5'], row['poi_address_mask5'], row['node5'], generate_s2_index(row['node5'])]
|
73 |
+
node6 = [row['node_t6'], row['poi_address_mask6'], row['node6'], generate_s2_index(row['node6'])]
|
74 |
+
label.extend(node1[3])
|
75 |
+
label.extend(node2[3])
|
76 |
+
label.extend(node3[3])
|
77 |
+
label.extend(node4[3])
|
78 |
+
label.extend(node5[3])
|
79 |
+
label.extend(node6[3])
|
80 |
+
node1.append(label)
|
81 |
+
node2.append(label)
|
82 |
+
node3.append(label)
|
83 |
+
node4.append(label)
|
84 |
+
node5.append(label)
|
85 |
+
node6.append(label)
|
86 |
+
node_s.append(node1)
|
87 |
+
node_s.append(node2)
|
88 |
+
node_s.append(node3)
|
89 |
+
node_s.append(node4)
|
90 |
+
node_s.append(node5)
|
91 |
+
node_s.append(node6)
|
92 |
+
data.append(node_s)
|
93 |
+
# print(data)
|
94 |
+
|
95 |
+
with open(pkl_path,'wb') as f:
|
96 |
+
pickle.dump(data,f)
|
97 |
+
|
98 |
+
|
99 |
+
def calculate_multi_s2_acc(predicted_s2, y):
|
100 |
+
acc_cnt = np.array([0, 0, 0, 0, 0, 0, 0])
|
101 |
+
y = y.view(-1, 33).tolist()
|
102 |
+
predicted = predicted_s2.view(-1, 33).tolist()
|
103 |
+
# print(y.shape, predicted.shape)
|
104 |
+
for index, s2 in enumerate(y):
|
105 |
+
for c, i in enumerate(range(12, 33, 3)):
|
106 |
+
y_l10 = y[index][12:i+3]
|
107 |
+
p_l10 = predicted[index][12:i+3]
|
108 |
+
# print(y_l10, p_l10, operator.eq(y_l10, p_l10))
|
109 |
+
if operator.eq(y_l10, p_l10):
|
110 |
+
acc_cnt[c] += 1
|
111 |
+
# print('==='*20)
|
112 |
+
# print(acc_cnt)
|
113 |
+
return acc_cnt
|
114 |
+
|
115 |
+
def calculate_multi_s2_acc_batch(predicted_s2, y, sequence_len = 6):
|
116 |
+
acc_cnt = np.array([0, 0, 0, 0, 0, 0, 0])
|
117 |
+
y = y.view(-1, sequence_len, 33).tolist()
|
118 |
+
predicted = predicted_s2.view(-1, sequence_len, 33).tolist()
|
119 |
+
# print(y.shape, predicted.shape)
|
120 |
+
batch_size = len(y)
|
121 |
+
for batch_i in range(batch_size):
|
122 |
+
for index, s2 in enumerate(y[batch_i]):
|
123 |
+
for c, i in enumerate(range(12, 33, 3)):
|
124 |
+
y_l10 = y[batch_i][index][12:i+3]
|
125 |
+
p_l10 = predicted[batch_i][index][12:i+3]
|
126 |
+
# print(y_l10, p_l10, operator.eq(y_l10, p_l10))
|
127 |
+
if operator.eq(y_l10, p_l10):
|
128 |
+
acc_cnt[c] += 1
|
129 |
+
# print('==='*20)
|
130 |
+
# print(acc_cnt)
|
131 |
+
return acc_cnt
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
def calculate_alias_acc(predicted, y):
|
136 |
+
tp, fp, fn, tn = 0, 0, 0, 0
|
137 |
+
acc = 0
|
138 |
+
for index, label in enumerate(y):
|
139 |
+
if int(label) == int(predicted[index]):
|
140 |
+
acc += 1
|
141 |
+
if int(label) == 1:
|
142 |
+
fn += 1
|
143 |
+
if int(predicted[index]) == 1:
|
144 |
+
tp += 1
|
145 |
+
if fn == 0:
|
146 |
+
precision = 0
|
147 |
+
else:
|
148 |
+
precision = tp / fn * 100
|
149 |
+
return tp, fn, acc
|
150 |
+
|
151 |
+
|
152 |
+
def calculate_aoi_acc(predicted, y):
|
153 |
+
tp, fp, fn, tn = 0, 0, 0, 0
|
154 |
+
acc = 0
|
155 |
+
for index, label in enumerate(y):
|
156 |
+
if int(label) == int(predicted[index]):
|
157 |
+
acc += 1
|
158 |
+
if int(label) == 0:
|
159 |
+
fn += 1
|
160 |
+
if int(predicted[index]) == 0:
|
161 |
+
tp += 1
|
162 |
+
if fn == 0:
|
163 |
+
precision = 0
|
164 |
+
else:
|
165 |
+
precision = tp / fn * 100
|
166 |
+
return tp, fn, acc
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|