Campqt commited on
Commit
cc6586a
1 Parent(s): 0db2ee3

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -50.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4355c896f3de5c43004f78dcf8bb6b9555f2824197184f81d5b197f75369998
3
+ size 123091
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c13644171c0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7c13643f8f40>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1693574756399563340,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAinxDv1VBEr+MYMk9reCSPx8FAr//W8k9fXMTvKzQVz82ZMk9340pPq4mhz+QYMk9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAArkNiP7C+Pr6of8G+26opP0nWib+2qom/vDnMP7e3qL63X4m+8I+cvR+nvr+2qom/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABsKSq/VZ31vl9OGz+vou2/T1GPvx/hdz9Yjmq/inxDv1VBEr+MYMk9E000vZIAoDw5dv68Lva4Pae4qj1c1lM9dY23vCrkr7qKLoo8l/8Kv7JqZj86wYa/3zRIQCE3BkA04JS7Z6+EP63gkj8fBQK//1vJPT1wM703/p48Q73/vOaduD0x3qo9a9ZTPXWNt7xH7q+6zRiKPFljyj6PFjc+LR5Ev/xKC7/cVcW/U3gLv5mvhD99cxO8rNBXPzZkyT0sKDS9zHyfPB9e/rxEbLk9mpeqPU9/VD2+Hq+8u76fOW9ziTzKgKI+r1tgPTnZYT+wycO+MQWdv3WXlj9wjmq/340pPq4mhz+QYMk9E000vUoAoDwaBP68S/a4Paa4qj0k1lM9dY23vNS9r7qOLoo8lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[-0.76361907 -0.5713094 0.09832868]\n [ 1.1474816 -0.50789064 0.09832 ]\n [-0.0089997 0.84302783 0.09833567]\n [ 0.16558026 1.0558679 0.09832871]]",
34
+ "desired_goal": "[[ 0.8838452 -0.18627429 -0.37792706]\n [ 0.6627633 -1.076852 -1.0755222 ]\n [ 1.5955119 -0.32952663 -0.26830837]\n [-0.07644641 -1.4894751 -1.0755222 ]]",
35
+ "observation": "[[-6.6469455e-01 -4.7971597e-01 6.0666460e-01 -1.8565272e+00\n -1.1196688e+00 9.6827883e-01 -9.1623449e-01 -7.6361907e-01\n -5.7130939e-01 9.8328680e-02 -4.4018816e-02 1.9531522e-02\n -3.1062232e-02 9.0313300e-02 8.3360009e-02 5.1718101e-02\n -2.2406319e-02 -1.3419439e-03 1.6867895e-02]\n [-5.4296249e-01 9.0006554e-01 -1.0527718e+00 3.1282270e+00\n 2.0971148e+00 -4.5433287e-03 1.0366029e+00 1.1474816e+00\n -5.0789064e-01 9.8320000e-02 -4.3808211e-02 1.9408328e-02\n -3.1218177e-02 9.0144917e-02 8.3431609e-02 5.1718157e-02\n -2.2406319e-02 -1.3422453e-03 1.6857529e-02]\n [ 3.9528921e-01 1.7879699e-01 -7.6608545e-01 -5.4411292e-01\n -1.5416827e+00 -5.4480475e-01 1.0366088e+00 -8.9997025e-03\n 8.4302783e-01 9.8335668e-02 -4.3983623e-02 1.9468687e-02\n -3.1050740e-02 9.0538532e-02 8.3296970e-02 5.1879223e-02\n -2.1376964e-02 3.0468949e-04 1.6778676e-02]\n [ 3.1738883e-01 5.4774936e-02 8.8222080e-01 -3.8239813e-01\n -1.2267209e+00 1.1764971e+00 -9.1623592e-01 1.6558026e-01\n 1.0558679e+00 9.8328710e-02 -4.4018816e-02 1.9531388e-02\n -3.1007815e-02 9.0313517e-02 8.3360001e-02 5.1717892e-02\n -2.2406319e-02 -1.3408014e-03 1.6867902e-02]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIXIMPkIGKzwK16M8CknJvdrdRr0K16M8pUhiPM9+CT0K16M8g96+PB1Arj0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAm6qsveJWkD24/6Y9QUMHPlBzvr350/49F30NPtGmvr2lZxM90fOkvV+aIz0yZu49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAIXIMPkIGKzwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAApJyb3a3Ua9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAClSGI8z34JPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAg96+PB1Arj0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[ 0.13715412 0.0104385 0.02 ]\n [-0.09828384 -0.04855142 0.02 ]\n [ 0.01381127 0.0335682 0.02 ]\n [ 0.02329946 0.08508322 0.02 ]]",
45
+ "desired_goal": "[[-0.08430978 0.07047822 0.08154243]\n [ 0.13209249 -0.09299338 0.12442774]\n [ 0.13817249 -0.09309161 0.03598752]\n [-0.08054317 0.03994214 0.11640586]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3715412e-01\n 1.0438504e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -9.8283842e-02\n -4.8551418e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3811265e-02\n 3.3568200e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 2.3299461e-02\n 8.5083224e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CmfALWRRuTdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CmfAquB+WodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cme88Kw6hhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfRfPw/gSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfeBxgiNbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfbNAcDKYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfXge7tiQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfseA3DNydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmf4s/QjUvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmf2fZM+NcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmfy2BjFyadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgGg5aNdadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgQU1IiC8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgL4rJ8v3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgIHbRF7VdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CmgMN2ki2VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgYWJSBK+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmghRVhkRSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgYwwsXizdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmgc2y9mHydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgoWCmMwUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgxgmReTndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgpPPTodNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgtW0JF9bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmg419ORDDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhB8a4tpVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmg5kZBLPEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmg9riEQGwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhJCDVYp2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhSIpx3mndX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CmhSpqASWadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhJwV9F4LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhN4b83uNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhZ3LNfPYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhjFNL128dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhaLd30PIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmheQr+YMOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhptwJgLJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhzG9QGfPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhqWBas6rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhucbR4QjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmh6L/0dzXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmiDckD6nBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmh6iRfWtmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmh+qG+K0ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmiKV0T101dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmiUPHLidbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmiLq/dqL1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmiPx3eN1hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmibsyzolldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmilEmQbMpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmicMbedkKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmigRZdOZcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmiroXj2i+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmi1kXUH6edX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmisxrrPdEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmiw4lyBCldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmi9JyyUs4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjHB3iaRZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmi+XJ5mh/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjCcrqdH2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjOCw8nuzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjXVrIo3KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjOjgZTAGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjSpt78ekdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CmjO3/5tWNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjeMFlkH2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjnabnX/YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjiqNAC4jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmje6hQFcIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjuXnhbW3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmj4HUlRgrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjzVVxS5zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmjvk25xzadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmj/WcawUydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkImYBvJjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkD0HyEtedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkAD8tPHldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkO2Zy+6AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkYRx95QhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkTSf+S8rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkPg0sOG1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmke28h9srdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkoJGe+VUdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CmkodkJ8fFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkjhnJ1aGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmkfw04zacdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkuptBOYZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmk4LGJemfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkzOaF23bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkvcmjTKDdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cmkv5LAYYSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmk+sV+I/JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmlI0XHim3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmlF+717IDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmlDFuejEfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmlWy8BdUsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmlle8f3evdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmliYfGMn7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmlfcXN1QqdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a545273bca5842587d8557fceae1c43978b54695b246f2f7346ba4da18708b40
3
+ size 51646
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a046bb220d0c278a28520ddce101dcd11d42236a888bed10bb83e8deb022bc42
3
+ size 52926
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c13644171c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c13643f8f40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693574756399563340, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAinxDv1VBEr+MYMk9reCSPx8FAr//W8k9fXMTvKzQVz82ZMk9340pPq4mhz+QYMk9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAArkNiP7C+Pr6of8G+26opP0nWib+2qom/vDnMP7e3qL63X4m+8I+cvR+nvr+2qom/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABsKSq/VZ31vl9OGz+vou2/T1GPvx/hdz9Yjmq/inxDv1VBEr+MYMk9E000vZIAoDw5dv68Lva4Pae4qj1c1lM9dY23vCrkr7qKLoo8l/8Kv7JqZj86wYa/3zRIQCE3BkA04JS7Z6+EP63gkj8fBQK//1vJPT1wM703/p48Q73/vOaduD0x3qo9a9ZTPXWNt7xH7q+6zRiKPFljyj6PFjc+LR5Ev/xKC7/cVcW/U3gLv5mvhD99cxO8rNBXPzZkyT0sKDS9zHyfPB9e/rxEbLk9mpeqPU9/VD2+Hq+8u76fOW9ziTzKgKI+r1tgPTnZYT+wycO+MQWdv3WXlj9wjmq/340pPq4mhz+QYMk9E000vUoAoDwaBP68S/a4Paa4qj0k1lM9dY23vNS9r7qOLoo8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.76361907 -0.5713094 0.09832868]\n [ 1.1474816 -0.50789064 0.09832 ]\n [-0.0089997 0.84302783 0.09833567]\n [ 0.16558026 1.0558679 0.09832871]]", "desired_goal": "[[ 0.8838452 -0.18627429 -0.37792706]\n [ 0.6627633 -1.076852 -1.0755222 ]\n [ 1.5955119 -0.32952663 -0.26830837]\n [-0.07644641 -1.4894751 -1.0755222 ]]", "observation": "[[-6.6469455e-01 -4.7971597e-01 6.0666460e-01 -1.8565272e+00\n -1.1196688e+00 9.6827883e-01 -9.1623449e-01 -7.6361907e-01\n -5.7130939e-01 9.8328680e-02 -4.4018816e-02 1.9531522e-02\n -3.1062232e-02 9.0313300e-02 8.3360009e-02 5.1718101e-02\n -2.2406319e-02 -1.3419439e-03 1.6867895e-02]\n [-5.4296249e-01 9.0006554e-01 -1.0527718e+00 3.1282270e+00\n 2.0971148e+00 -4.5433287e-03 1.0366029e+00 1.1474816e+00\n -5.0789064e-01 9.8320000e-02 -4.3808211e-02 1.9408328e-02\n -3.1218177e-02 9.0144917e-02 8.3431609e-02 5.1718157e-02\n -2.2406319e-02 -1.3422453e-03 1.6857529e-02]\n [ 3.9528921e-01 1.7879699e-01 -7.6608545e-01 -5.4411292e-01\n -1.5416827e+00 -5.4480475e-01 1.0366088e+00 -8.9997025e-03\n 8.4302783e-01 9.8335668e-02 -4.3983623e-02 1.9468687e-02\n -3.1050740e-02 9.0538532e-02 8.3296970e-02 5.1879223e-02\n -2.1376964e-02 3.0468949e-04 1.6778676e-02]\n [ 3.1738883e-01 5.4774936e-02 8.8222080e-01 -3.8239813e-01\n -1.2267209e+00 1.1764971e+00 -9.1623592e-01 1.6558026e-01\n 1.0558679e+00 9.8328710e-02 -4.4018816e-02 1.9531388e-02\n -3.1007815e-02 9.0313517e-02 8.3360001e-02 5.1717892e-02\n -2.2406319e-02 -1.3408014e-03 1.6867902e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIXIMPkIGKzwK16M8CknJvdrdRr0K16M8pUhiPM9+CT0K16M8g96+PB1Arj0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAm6qsveJWkD24/6Y9QUMHPlBzvr350/49F30NPtGmvr2lZxM90fOkvV+aIz0yZu49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAIXIMPkIGKzwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAApJyb3a3Ua9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAClSGI8z34JPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAg96+PB1Arj0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.13715412 0.0104385 0.02 ]\n [-0.09828384 -0.04855142 0.02 ]\n [ 0.01381127 0.0335682 0.02 ]\n [ 0.02329946 0.08508322 0.02 ]]", "desired_goal": "[[-0.08430978 0.07047822 0.08154243]\n [ 0.13209249 -0.09299338 0.12442774]\n [ 0.13817249 -0.09309161 0.03598752]\n [-0.08054317 0.03994214 0.11640586]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3715412e-01\n 1.0438504e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -9.8283842e-02\n -4.8551418e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3811265e-02\n 3.3568200e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 2.3299461e-02\n 8.5083224e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CmfALWRRuTdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CmfAquB+WodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cme88Kw6hhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfRfPw/gSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfeBxgiNbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfbNAcDKYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfXge7tiQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfseA3DNydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmf4s/QjUvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmf2fZM+NcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmfy2BjFyadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgGg5aNdadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgQU1IiC8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgL4rJ8v3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgIHbRF7VdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CmgMN2ki2VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgYWJSBK+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmghRVhkRSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgYwwsXizdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmgc2y9mHydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgoWCmMwUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgxgmReTndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgpPPTodNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgtW0JF9bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmg419ORDDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhB8a4tpVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmg5kZBLPEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmg9riEQGwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhJCDVYp2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhSIpx3mndX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CmhSpqASWadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhJwV9F4LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhN4b83uNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhZ3LNfPYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhjFNL128dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhaLd30PIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmheQr+YMOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhptwJgLJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhzG9QGfPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhqWBas6rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhucbR4QjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmh6L/0dzXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmiDckD6nBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmh6iRfWtmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmh+qG+K0ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmiKV0T101dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmiUPHLidbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmiLq/dqL1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmiPx3eN1hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmibsyzolldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmilEmQbMpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmicMbedkKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmigRZdOZcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmiroXj2i+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmi1kXUH6edX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmisxrrPdEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmiw4lyBCldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmi9JyyUs4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjHB3iaRZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmi+XJ5mh/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjCcrqdH2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjOCw8nuzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjXVrIo3KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjOjgZTAGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjSpt78ekdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CmjO3/5tWNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjeMFlkH2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjnabnX/YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjiqNAC4jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmje6hQFcIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjuXnhbW3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmj4HUlRgrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjzVVxS5zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmjvk25xzadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmj/WcawUydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkImYBvJjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkD0HyEtedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkAD8tPHldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkO2Zy+6AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkYRx95QhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkTSf+S8rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkPg0sOG1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmke28h9srdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkoJGe+VUdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CmkodkJ8fFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkjhnJ1aGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmkfw04zacdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkuptBOYZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmk4LGJemfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkzOaF23bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkvcmjTKDdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cmkv5LAYYSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmk+sV+I/JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmlI0XHim3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmlF+717IDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmlDFuejEfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmlWy8BdUsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmlle8f3evdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmliYfGMn7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmlfcXN1QqdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (1,000 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-01T14:23:44.103726"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fce7325f0fd7f1936a110c0564919fca65fc6c840d3e9cb82be044ea20a2a8a9
3
+ size 3023