--- language: - th license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Th-test results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: th split: None args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 67.21746226030191 --- # Whisper Small Th-test This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1682 - Wer: 67.2175 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2871 | 0.3740 | 1000 | 0.2529 | 79.2194 | | 0.2218 | 0.7479 | 2000 | 0.1997 | 71.3654 | | 0.125 | 1.1219 | 3000 | 0.1770 | 68.7407 | | 0.1263 | 1.4959 | 4000 | 0.1682 | 67.2175 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1