Charm333 commited on
Commit
9f5ddea
1 Parent(s): 9c2e0a7

Upload 11 files

Browse files
LICENSE ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Yi Series Models Community License Agreement
2
+ Version: 2.1
3
+ Date of Release: November 23, 2023
4
+
5
+ 1. Definition
6
+
7
+ “Agreement” refers to the terms and conditions defined in this Yi Series Models
8
+ Community License Agreement for the use, reproduction and distribution of Yi
9
+ Series Models.
10
+
11
+ “Model” refers to associated components (including checkpoints) developed based
12
+ on machine learning, including learned weights and parameters (including the
13
+ status of optimizer).
14
+
15
+ “Yi Series Models” refers to opensource models with different specifications and
16
+ capabilities named “Yi” provided by the Licensor, including Yi-6B, Yi-34B etc.
17
+
18
+ “Derivatives” refers to all modifications to Yi Series Models, work based on Yi
19
+ Series Models, or any other models created or initialized by transferring the
20
+ weights, parameters, activations, or output patterns of Yi Series Models to
21
+ other models to achieve similar performance, including but not limited to
22
+ methods that require using intermediate data representations or generating
23
+ synthetic data based on Yi Series Models to train other models.
24
+
25
+ “Licensor” refers to Beijing Lingyiwanwu Information Technology Co., Ltd.
26
+
27
+ “you” refers to an individual or legal entity that exercises the license granted
28
+ by this Agreement and/or uses the Yi Series Models for any purpose and in any
29
+ field of use.
30
+
31
+ “Third Party” refers to any individuals, legal entities or non-legal
32
+ organizations other than you.
33
+
34
+ “Distribute” refers to transmitting, copying, publishing, or otherwise sharing
35
+ the Yi Series Models with third parties, including providing the Yi Series
36
+ Models through electronic or other remote means (such as any SaaS software or
37
+ PaaS software accessed via API or web access).
38
+
39
+ “Commercial Purposes” refers to the use of the Yi Series Models, directly or
40
+ indirectly, for the operation, promotion, revenue generation, or any other
41
+ profit-making purposes for entities or individuals.
42
+
43
+ “Laws and Regulations” refers to the laws and administrative regulations of the
44
+ mainland of the People's Republic of China (for the purposes of this Agreement
45
+ only, excluding Hong Kong, Macau, and Taiwan).
46
+
47
+ “Personal Information” refers to various information related to identified or
48
+ identifiable natural persons recorded electronically or by other means,
49
+ excluding information that has been anonymized.
50
+
51
+ “Logo” refers to any trademark, service mark, trade name, domain name, website
52
+ name, or other distinctive branding marks.
53
+
54
+ 2. License and License Restrictions
55
+ The Licensor hereby grants you a non-exclusive, global, non-transferable,
56
+ non-sub-licensable, revocable, and royalty-free copyright license. You must
57
+ adhere to the following license restrictions:
58
+
59
+ 1) Your use of the Yi Series Models must comply with the Laws and Regulations as
60
+ well as applicable legal requirements of other countries/regions, and respect
61
+ social ethics and moral standards, including but not limited to, not using the
62
+ Yi Series Models for purposes prohibited by Laws and Regulations as well as
63
+ applicable legal requirements of other countries/regions, such as harming
64
+ national security, promoting terrorism, extremism, inciting ethnic or racial
65
+ hatred, discrimination, violence, or pornography, and spreading false harmful
66
+ information.
67
+
68
+ 2) You shall not, for military or unlawful purposes or in ways not allowed by
69
+ Laws and Regulations as well as applicable legal requirements of other
70
+ countries/regions, a) use, copy or Distribute the Yi Series Models, or b) create
71
+ complete or partial Derivatives of the Yi Series Models.
72
+
73
+ 3) Your use of the Yi Series Models (including using the output of the Yi Series
74
+ Models) and the creation of Derivatives must not infringe upon the legitimate
75
+ rights of any Third Party, including but not limited to the rights of personal
76
+ rights such as the right to likeness, reputation, and privacy, as well as
77
+ intellectual property rights such as copyrights, patents, trade secrets, and
78
+ other property rights.
79
+
80
+ 4) You must clearly attribute the source of the Yi Series Models to the Licensor
81
+ and provide a copy of this Agreement to any Third-Party users of the Yi Series
82
+ Models and Derivatives.
83
+
84
+ 5) If you modify the Yi Series Models to create Derivatives, you must clearly
85
+ indicate the substantial modifications made, and these modifications shall not
86
+ violate the license restrictions of this Agreement. You shall not enable,
87
+ assist, or in any way facilitate Third Parties to violate the license
88
+ restrictions of this Agreement.
89
+
90
+ If you plan to use the Yi Series Models and Derivatives for Commercial Purposes,
91
+ please refer to the Registration Form of Yi Series Models for Commercial Purposes
92
+ (“Registration Form”), as provided in Attachment 1 of the Yi Series Models
93
+ Commercial License Agreement (available at https://www.lingyiwanwu.com/yi-license)
94
+ and send completed Registration Form to the email: [email protected] to complete the
95
+ registration and obtain the license for Commercial Purposes. If you obtained the
96
+ license for Commercial Purposes and use the Yi Series Models and Derivatives for
97
+ Commercial Purposes, you must comply with the afore-mentioned license restrictions
98
+ and restrictions specified under the Yi Series Models Commercial License Agreement.
99
+
100
+
101
+ 3. Intellectual Property
102
+ The ownership of the Yi Series Models and their related intellectual property
103
+ rights is solely held by the Licensor.
104
+
105
+ In any circumstance, without the prior written consent of the Licensor, you are
106
+ not allowed to use any Logo associated with the Licensor. If your use of
107
+ Licensor's Logo in violation of this Agreement causes any losses to the Licensor
108
+ or others, you will bear full legal responsibility.
109
+
110
+
111
+ 4. Disclaimer and Limitation of Liability
112
+
113
+ The Yi Series Models are provided "AS IS." The Licensor does not provide any
114
+ express or implied warranties for the Yi Series Models, including but not
115
+ limited to stability, ownership, merchantability, non-infringement, or fitness
116
+ for a specific purpose of the Yi Series Models and their output results. You
117
+ assume all responsibilities for the risks and consequences arising from the use,
118
+ reproduction, distribution of the Yi Series Models, and the creation of
119
+ Derivatives.
120
+
121
+ The Licensor complies with Laws and Regulations at all stages of model training,
122
+ maintaining the legality, authenticity, accuracy, objectivity, and diversity of
123
+ data and algorithms. The Licensor is not liable for any direct, indirect,
124
+ incidental consequences, and other losses or damages related to your use,
125
+ reproduction, and distribution of the Yi Series Models, and the creation of
126
+ Derivatives under this Agreement. This includes but is not limited to:
127
+
128
+ 1) The Licensor is not responsible for data security risks resulting from your
129
+ use of the Yi Series Models.
130
+
131
+ 2) The Yi Series Models may contain Personal Information. When you use Yi Series
132
+ Models, you acknowledge that you are the data processing entity as defined under
133
+ the Laws and Regulations responsible for determining the processing methods and
134
+ purposes of Personal Information. You must comply with legal requirements for
135
+ processing any Personal Information that may be contained in the Yi Series
136
+ Models and assume the associated legal responsibilities, as well as the risks
137
+ and consequences of processing Personal Information.
138
+
139
+ 3) The Licensor is not liable for reputation risks arising from your use of the
140
+ Yi Series Models or the output results of the Yi Series Models.
141
+
142
+ 4) The Licensor is not liable for intellectual property risks associated with
143
+ your use of the Yi Series Models’ output results.
144
+
145
+ If your use, reproduction, distribution of the Yi Series Models, or the creation
146
+ of Derivatives result in losses to the Licensor, the Licensor has the right to
147
+ seek compensation from you. For any claims made by Third Parties against the
148
+ Licensor related to your use, reproduction, and distribution of the Yi Series
149
+ Models, or the creation of Derivatives, the Licensor has the right to demand
150
+ that you defend, compensate, and indemnify the Licensor and protect the Licensor
151
+ from harm.
152
+
153
+
154
+ 5. Dispute Resolution
155
+
156
+ The stipulation, effectiveness, interpretation, performance, modification, and
157
+ termination of the Agreement, the use, copy and Distribute of the Yi Series
158
+ Models, and dispute resolution associated with your use, copy and distribution
159
+ shall be governed by the laws of the mainland of the People's Republic of China
160
+ (for the purposes of this agreement only, excluding Hong Kong, Macau, and
161
+ Taiwan), and the application of conflict of laws is excluded.
162
+
163
+ Any disputes arising from the use, copy or distribution of the Yi Series Models
164
+ should first be resolved through amicable negotiations. If negotiations fail,
165
+ legal proceedings should be initiated in the People's Court at the location of
166
+ the Licensor.
167
+
168
+
169
+ 6. Effectiveness and Termination of the Agreement
170
+
171
+ Your use of the Yi Series Models signifies that you have read and agreed to be
172
+ bound by the terms of the Agreement. The Agreement becomes effective from the
173
+ date of your use of the Yi Series Models and will terminate from the date you
174
+ cease using the Yi Series Models. If you violate any terms or restrictions in
175
+ the Agreement, the Licensor reserves the right to terminate the Agreement.
176
+
177
+ Upon termination of the Agreement, you must immediately cease using the Yi
178
+ Series Models. Section 4, "Disclaimer and Limitation of Liability," and Section
179
+ 5, "Dispute Resolution," of this Agreement remain in effect after the
180
+ termination of this Agreement.
181
+
182
+
183
+ 7. Updates to the Agreement and Contact Information
184
+
185
+ The Licensor reserves the right to update the Agreement from time to time. The
186
+ latest version of the Agreement will be posted by the Licensor through
187
+ https://01.ai.
188
+
189
+ For any questions related to licensing and copyright, please contact the
190
+ Licensor at [email protected].
191
+
192
+
193
+
194
+ Yi系列模型社区许可协议
195
+ 版本: 2.1
196
+ 发布日期: 2023年11月23日
197
+
198
+ 1. 定义
199
+
200
+ “协议”是指本协议中定义Yi系列模型使用、复制和分发的条款和条件。
201
+
202
+ “模型”是指任何附带的基于机器学习的组件(包括检查点),包括学习的权重、参数(包括优
203
+ 化器状态)。
204
+
205
+ “Yi系列模型”是指许可方开源的以Yi命名的不同规格、不同能力的模型,包括
206
+ Yi-6B、Yi-34B等。
207
+
208
+ “模型衍生品”是指对Yi系列模型的所有修改、基于Yi系列模型的工作,或通过将Yi系列模型
209
+ 的权重、参数、激活或输出模式转移到其他模型而创建或初始化的任何其他模型,以使其他
210
+ 模型的性能与Yi系列模型类似,包括但不限于需要使用中间数据表示的提取方法或基于Yi系
211
+ 列模型生成合成数据来训练其他模型的方法。
212
+
213
+ “许可方”是指北京零一万物信息技术有限公司。
214
+
215
+ “您”是指行使本协议授予的权限和/或出于任何目的和在任何使用领域使用Yi系列模型的个
216
+ 人或法人实体。
217
+
218
+ “第三方”是指您之外的任何个人、法人实体或非法人组织。
219
+
220
+ “分发”是指向第三方传输、复制、发布或以其他方式共享Yi系列模型,包括将Yi系列模型作
221
+ 为通过电子或其他远程方式(例如基于 API 或 Web 访问的任何 SaaS 软件或 PaaS 软
222
+ 件)提供。
223
+
224
+ “商业用途”是指使用Yi系列模型,直接或间接为实体或个人进行运营、推广或产生收入,或
225
+ 用于任何其他盈利目的。
226
+
227
+ “法律法规”是指中华人民共和国大陆地区(仅为本协议之目的,不包括香港、澳门和台湾)
228
+ 的法律及行政法规。
229
+
230
+ “个人信息”是指以电子或者其他方式记录的与已识别或者可识别的自然人有关的各种信息,
231
+ 不包括匿名化处理后的信息。
232
+
233
+ “标识” 是指任何商标、服务标记、商号、域名、网站名称或其他带有显著品牌特征的标记。
234
+
235
+
236
+ 2. 许可及许可限制
237
+
238
+ 许可方特此授予您非排他性、全球性、不可转让、不可再许可、可撤销、免版税的版权许可。
239
+ 您必须满足如下许可限制条件:
240
+
241
+ 1) 您对Yi系列模型的使用应遵守法律法规以及其他国家/地区适用的法律要求、尊重社会公
242
+ 德和伦理道德。包括但不限于您不得将Yi系列模型用作危害国家安全、宣扬恐怖主义、极端
243
+ 主义,宣扬民族及种族仇恨、歧视,暴力、色情,以及虚假有害信息等法律法规以及其他国
244
+ 家/地区适用的法律要求禁止的目的。
245
+
246
+ 2) 您不得出于军事或非法目的,或以法律法规以及其他国家/地区适用的法律要求所不允许
247
+ 的方式 a) 使用、复制、或分发Yi系列模型; 或 b) 创建Yi系列模型的全部或部分衍生品。
248
+
249
+ 3) 您对Yi系列模型的使用(包括使用Yi系列模型的输出)以及模型衍生品的创建不得侵犯
250
+ 任何第三方的合法权益,包括但不限于他人肖像权、名誉权、隐私权等人格权,著作权、专
251
+ 利权、商业秘密等知识产权,或其他财产权益。
252
+
253
+ 4) 您必须向Yi系列模型及Yi系列模型衍生品的任何第三方使用者明确Yi系列模型的来源为
254
+ 许可方并向其提供本协议的副本。
255
+
256
+ 5) 若您修改Yi系列模型得到模型衍生品,您必须以显著的方式说明修改的内容,且上述修
257
+ 改不得违反本协议的许可限制条件,也不能允许、协助或以其他方式使得第三方违反本协议
258
+ 中的许可限制条件。
259
+
260
+ 如果您计划将Yi系列模型及模型衍生品用作商业用途,请参见《Yi系列模型商用许可协议》
261
+ (参见:https://www.lingyiwanwu.com/yi-license)附件一《Yi系列模型商用登
262
+ 记表》(“登记表”)并将填写完毕的登记表发送至 [email protected] 邮箱完成登记即可获得商用
263
+ 许可。若您获得商用许可并将Yi系列模型及模型衍生品用作商业用途,您应满足许可方上述
264
+ 许可限制条件及《Yi系列模型商用许可协议》中的商业许可限制。
265
+
266
+ 3. 知识产权
267
+
268
+ Yi系列模型的所有权及其相关知识产权,由许可方单独所有。
269
+
270
+ 在任何情况下,未经许可方事先书面同意,您不得以任何方式使用许可方的任何标识。由于
271
+ 您违反本协议使用许可方的标识给许可方或他人造成损失的,由您承担全部法律责任。
272
+
273
+
274
+ 4. 免责声明及责任限制
275
+
276
+ Yi系列模型按“原样”提供。许可方不对Yi系列模型提供任何明示或暗示的保证,包括但不限
277
+ 于:模型及输出结果的稳定性、所有权、适销性、非侵权性、或特定用途适用性。您将对适
278
+ 用、复制及分发Yi系列模型以及创建模型衍生品所产生的风险与后果承担所有责任。
279
+
280
+ 许可方在模型训练的所有阶段都遵守法律法规,坚持维护数据和算法的合法、真实、准确、
281
+ 客观和多样性。许可方不对您根据本协议使用、复制及分发Yi系列模型,以及创建模��衍生
282
+ 品而产生或与之相关的任何直接、间接、附带的后果、以及其他损失或损害承担责任。包括
283
+ 但不限于:
284
+
285
+ 1) 许可方不承担您因使用Yi系列模型而导致的数据安全风险。
286
+
287
+ 2) Yi系列模型中可能包含个人信息。在您使用Yi系列模型的过程中,您承认您为法律法规
288
+ 定义下决定个人信息处理方式和目的的个人信息处理者。您应遵守法律法规要求处理Yi系列
289
+ 模型中可能包含的个人信息,并承担相应的法律责任,以及处理个人信息的风险和后果。
290
+
291
+ 3) 许可方不承担您使用Yi系列模型或模型输出结果而产生的声誉风险。
292
+
293
+ 4) 许可方不承担您使用Yi系列模型的输出结果涉及的知识产权风险。
294
+
295
+ 若由于您对Yi系列模型的使用、复制或分发,或者创建模型衍生品而导致许可方遭受损失,
296
+ 许可方有权要求您对许可方的损失进行赔偿。对于任何第三方向许可方提出的因您使用、复
297
+ 制或分发Yi系列模型或创建模型衍生品行为的相关索赔,许可方有权要求您为许可方进行辩
298
+ 护、赔偿并使许可方免受损害。
299
+
300
+
301
+ 5. 争议解决
302
+
303
+ 协议的订立、效力、解释、履行、修改和终止,使用、复制和分发Yi系列模型以及争议解决
304
+ 均适用中华人民共和国大陆地区(仅为本协议之目的,不包括香港、澳门和台湾)法律,并
305
+ 排除冲突法的适用。
306
+
307
+ 因使用、复制和分发Yi系列模型而发生的任何争议,各方应首先通过友好协商的方式加以解
308
+ 决。协商不成时,应向许可方所在地人民法院提起诉讼。
309
+
310
+
311
+ 6. 协议的生效及终止
312
+
313
+ 您使用Yi系列模型即表示您已阅读并同意接受协议的约束。协议自您使用Yi系列模型之日起
314
+ 生效并将在您停止使用Yi系列模型之日起终止。若您违反协议中的任何条款或限制,许可方
315
+ 有权终止协议。
316
+
317
+ 若协议终止,您需立即停止使用Yi系列模型。本协议第4条“免责声明及责任限制”及第5条
318
+ “争议解决”在协议终止后仍有效。
319
+
320
+
321
+ 7. 协议更新及联系方式
322
+
323
+ 许可方有权对协议进行不时更新。许可方将通过 https://01.ai 公布协议最新版本。有关
324
+ 许可和版权的任何问题,请通过 [email protected] 与许可方联系。
README.md ADDED
@@ -0,0 +1,460 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: yi-license
4
+ license_link: LICENSE
5
+ widget:
6
+ - example_title: "Yi-34B-Chat"
7
+ text: "hi"
8
+ output:
9
+ text: " Hello! How can I assist you today?"
10
+ - example_title: "Yi-34B"
11
+ text: "There's a place where time stands still. A place of breath taking wonder, but also"
12
+ output:
13
+ text: " an eerie sense that something is just not right…\nBetween the two worlds lies The Forgotten Kingdom - home to creatures long since thought extinct and ancient magic so strong it defies belief! Only here can you find what has been lost for centuries: An Elixir Of Life which will restore youth and vitality if only those who seek its power are brave enough to face up against all manner of dangers lurking in this mysterious land! But beware; some say there may even exist powerful entities beyond our comprehension whose intentions towards humanity remain unclear at best ---- they might want nothing more than destruction itself rather then anything else from their quest after immortality (and maybe someone should tell them about modern medicine)? In any event though – one thing remains true regardless : whether or not success comes easy depends entirely upon how much effort we put into conquering whatever challenges lie ahead along with having faith deep down inside ourselves too ;) So let’s get started now shall We?"
14
+ pipeline_tag: text-generation
15
+ ---
16
+
17
+ <div align="center">
18
+
19
+ <picture>
20
+ <source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_dark.svg" width="200px">
21
+ <source media="(prefers-color-scheme: light)" srcset="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg" width="200px">
22
+ <img alt="specify theme context for images" src="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg">
23
+ </picture>
24
+
25
+ </br>
26
+ </br>
27
+
28
+ <div style="display: inline-block;">
29
+ <a rel="noopener nofollow" href="https://github.com/01-ai/Yi/actions/workflows/build_docker_image.yml">
30
+ <img src="https://github.com/01-ai/Yi/actions/workflows/build_docker_image.yml/badge.svg" style="margin: 0 0;">
31
+ </a>
32
+ </div>
33
+
34
+ <div style="display: inline-block;">
35
+ <a href="https://huggingface.co/01-ai">
36
+ <img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-01--ai-blue" style="margin: 0 0;">
37
+ </a>
38
+ </div>
39
+
40
+ <div style="display: inline-block;">
41
+ <a rel="noopener nofollow" href="https://www.modelscope.cn/organization/01ai/">
42
+ <img src="https://img.shields.io/badge/ModelScope-01--ai-blue" style="margin: 0 0;">
43
+ </a>
44
+ </div>
45
+
46
+ <div style="display: inline-block;">
47
+ <a rel="noopener nofollow" href="https://wisemodel.cn/organization/01.AI">
48
+ <img src="https://img.shields.io/badge/WiseModel-01--ai-blue" style="margin: 0 0;">
49
+ </a>
50
+ </div>
51
+
52
+ <div style="display: inline-block;">
53
+ <a rel="noopener nofollow" href="https://replicate.com/01-ai">
54
+ <img src="https://img.shields.io/badge/Replicate-01--ai-blue?logo=" style="margin: 0 0;">
55
+ </a>
56
+ </div>
57
+
58
+ <div style="display: inline-block;">
59
+ <a rel="noopener nofollow" href="https://github.com/01-ai/Yi/blob/main/LICENSE">
60
+ <img src="https://img.shields.io/badge/Code_License-Apache_2.0-lightblue" style="margin: 0 0;">
61
+ </a>
62
+ </div>
63
+
64
+ <div style="display: inline-block;">
65
+ <a rel="noopener nofollow" href="https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt">
66
+ <img src="https://img.shields.io/badge/Model_License-Model_Agreement-lightblue" style="margin: 0 0;">
67
+ </a>
68
+ </div>
69
+
70
+ <div style="display: inline-block;">
71
+ <a rel="noopener nofollow" href="mailto:[email protected]">
72
+ <img src="https://img.shields.io/badge/✉️[email protected]" style="margin: 0 0;">
73
+ </a>
74
+ </div>
75
+
76
+ </div>
77
+
78
+ ## Introduction
79
+
80
+ The **Yi** series models are large language models trained from scratch by
81
+ developers at [01.AI](https://01.ai/).
82
+
83
+ ## News
84
+
85
+ <details open>
86
+ <summary>🎯 <b>2023/11/23</b>: The chat models are open to public.</summary>
87
+
88
+ This release contains two chat models based on previous released base models, two 8-bits models quantized by GPTQ, two 4-bits models quantized by AWQ.
89
+
90
+ - `Yi-34B-Chat`
91
+ - `Yi-34B-Chat-4bits`
92
+ - `Yi-34B-Chat-8bits`
93
+ - `Yi-6B-Chat`
94
+ - `Yi-6B-Chat-4bits`
95
+ - `Yi-6B-Chat-8bits`
96
+
97
+ You can try some of them interactively at:
98
+
99
+ - [Hugging Face](https://huggingface.co/spaces/01-ai/Yi-34B-Chat)
100
+ - [Replicate](https://replicate.com/01-ai)
101
+ </details>
102
+
103
+ <details open>
104
+ <summary>🔔 <b>2023/11/23</b>: The Yi Series Models Community License Agreement is updated to v2.1.</summary>
105
+ </details>
106
+
107
+ <details>
108
+ <summary>🔥 <b>2023/11/08</b>: Invited test of Yi-34B chat model.</summary>
109
+
110
+ Application form:
111
+
112
+ - [English](https://cn.mikecrm.com/l91ODJf)
113
+ - [Chinese](https://cn.mikecrm.com/gnEZjiQ)
114
+
115
+ </details>
116
+
117
+ <details>
118
+ <summary>🎯 <b>2023/11/05</b>: The base model of <code>Yi-6B-200K</code> and <code>Yi-34B-200K</code>.</summary>
119
+
120
+ This release contains two base models with the same parameter sizes of previous
121
+ release, except that the context window is extended to 200K.
122
+
123
+ </details>
124
+
125
+ <details>
126
+ <summary>🎯 <b>2023/11/02</b>: The base model of <code>Yi-6B</code> and <code>Yi-34B</code>.</summary>
127
+
128
+ The first public release contains two bilingual (English/Chinese) base models
129
+ with the parameter sizes of 6B and 34B. Both of them are trained with 4K
130
+ sequence length and can be extended to 32K during inference time.
131
+
132
+ </details>
133
+
134
+ ## Ecosystem
135
+
136
+ 🤗 You are encouraged to create a PR and share your awesome work built on top of
137
+ the Yi series models.
138
+
139
+ - Serving
140
+ - [ScaleLLM](https://github.com/vectorch-ai/ScaleLLM#supported-models): Efficiently run Yi models locally.
141
+ - Quantization
142
+ - [TheBloke/Yi-34B-GGUF](https://huggingface.co/TheBloke/Yi-34B-GGUF)
143
+ - [TheBloke/Yi-34B-GPTQ](https://huggingface.co/TheBloke/Yi-34B-GPTQ)
144
+ - Finetuning
145
+ - [NousResearch/Nous-Capybara-34B](https://huggingface.co/NousResearch/Nous-Capybara-34B)
146
+ - [SUSTech/SUS-Chat-34B](https://huggingface.co/SUSTech/SUS-Chat-34B): This
147
+ model ranks first among all models below 70B and has outperformed the twice
148
+ larger
149
+ [deepseek-llm-67b-chat](https://huggingface.co/deepseek-ai/deepseek-llm-67b-chat).
150
+ You can check the result in [🤗 Open LLM
151
+ Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
152
+
153
+ ## Model Performance
154
+
155
+ ### Base Model Performance
156
+
157
+ | Model | MMLU | CMMLU | C-Eval | GAOKAO | BBH | Common-sense Reasoning | Reading Comprehension | Math & Code |
158
+ | :------------ | :------: | :------: | :------: | :------: | :------: | :--------------------: | :-------------------: | :---------: |
159
+ | | 5-shot | 5-shot | 5-shot | 0-shot | 3-shot@1 | - | - | - |
160
+ | LLaMA2-34B | 62.6 | - | - | - | 44.1 | 69.9 | 68.0 | 26.0 |
161
+ | LLaMA2-70B | 68.9 | 53.3 | - | 49.8 | 51.2 | 71.9 | 69.4 | 36.8 |
162
+ | Baichuan2-13B | 59.2 | 62.0 | 58.1 | 54.3 | 48.8 | 64.3 | 62.4 | 23.0 |
163
+ | Qwen-14B | 66.3 | 71.0 | 72.1 | 62.5 | 53.4 | 73.3 | 72.5 | **39.8** |
164
+ | Skywork-13B | 62.1 | 61.8 | 60.6 | 68.1 | 41.7 | 72.4 | 61.4 | 24.9 |
165
+ | InternLM-20B | 62.1 | 59.0 | 58.8 | 45.5 | 52.5 | 78.3 | - | 30.4 |
166
+ | Aquila-34B | 67.8 | 71.4 | 63.1 | - | - | - | - | - |
167
+ | Falcon-180B | 70.4 | 58.0 | 57.8 | 59.0 | 54.0 | 77.3 | 68.8 | 34.0 |
168
+ | Yi-6B | 63.2 | 75.5 | 72.0 | 72.2 | 42.8 | 72.3 | 68.7 | 19.8 |
169
+ | Yi-6B-200K | 64.0 | 75.3 | 73.5 | 73.9 | 42.0 | 72.0 | 69.1 | 19.0 |
170
+ | **Yi-34B** | **76.3** | **83.7** | 81.4 | 82.8 | **54.3** | **80.1** | 76.4 | 37.1 |
171
+ | Yi-34B-200K | 76.1 | 83.6 | **81.9** | **83.4** | 52.7 | 79.7 | **76.6** | 36.3 |
172
+
173
+ While benchmarking open-source models, we have observed a disparity between the
174
+ results generated by our pipeline and those reported in public sources (e.g.
175
+ OpenCompass). Upon conducting a more in-depth investigation of this difference,
176
+ we have discovered that various models may employ different prompts,
177
+ post-processing strategies, and sampling techniques, potentially resulting in
178
+ significant variations in the outcomes. Our prompt and post-processing strategy
179
+ remains consistent with the original benchmark, and greedy decoding is employed
180
+ during evaluation without any post-processing for the generated content. For
181
+ scores that were not reported by the original authors (including scores reported
182
+ with different settings), we try to get results with our pipeline.
183
+
184
+ To evaluate the model's capability extensively, we adopted the methodology
185
+ outlined in Llama2. Specifically, we included PIQA, SIQA, HellaSwag, WinoGrande,
186
+ ARC, OBQA, and CSQA to assess common sense reasoning. SquAD, QuAC, and BoolQ
187
+ were incorporated to evaluate reading comprehension. CSQA was exclusively tested
188
+ using a 7-shot setup, while all other tests were conducted with a 0-shot
189
+ configuration. Additionally, we introduced GSM8K (8-shot@1), MATH (4-shot@1),
190
+ HumanEval (0-shot@1), and MBPP (3-shot@1) under the category "Math & Code". Due
191
+ to technical constraints, we did not test Falcon-180 on QuAC and OBQA; the score
192
+ is derived by averaging the scores on the remaining tasks. Since the scores for
193
+ these two tasks are generally lower than the average, we believe that
194
+ Falcon-180B's performance was not underestimated.
195
+
196
+ ### Chat Model Performance
197
+
198
+ | Model | MMLU | MMLU | CMMLU | CMMLU | C-Eval(val)<sup>*</sup> | C-Eval(val)<sup>*</sup> | Truthful QA | BBH | BBH | GSM8k | GSM8k |
199
+ | ----------------------- | --------- | --------- | --------- | --------- | ----------------------- | ----------------------- | ----------- | --------- | --------- | --------- | --------- |
200
+ | | 0-shot | 5-shot | 0-shot | 5-shot | 0-shot | 5-shot | 0-shot | 0-shot | 3-shot | 0-shot | 4-shot |
201
+ | LLaMA2-13B-Chat | 50.88 | 47.33 | 27.47 | 35.08 | 27.93 | 35.88 | 36.84 | 32.90 | 58.22 | 36.85 | 2.73 |
202
+ | LLaMA2-70B-Chat | 59.42 | 59.86 | 36.10 | 40.99 | 34.99 | 41.31 | 53.95 | 42.36 | 58.53 | 47.08 | 58.68 |
203
+ | Baichuan2-13B-Chat | 55.09 | 50.14 | 58.64 | 59.47 | 56.02 | 54.75 | 48.98 | 38.81 | 47.15 | 45.72 | 23.28 |
204
+ | Qwen-14B-Chat | 63.99 | 64.98 | 67.73 | 70.57 | 66.12 | 70.06 | 52.49 | 49.65 | 54.98 | 59.51 | 61.18 |
205
+ | InternLM-Chat-20B | 55.55 | 57.42 | 53.55 | 53.75 | 51.19 | 53.57 | 51.75 | 42.41 | 36.68 | 15.69 | 43.44 |
206
+ | AquilaChat2-34B v1.2 | 65.15 | 66.70 | 67.51 | 70.02 | **82.99** | **89.38** | **64.33** | 20.12 | 34.28 | 11.52 | 48.45 |
207
+ | Yi-6B-Chat | 58.24 | 60.99 | 69.44 | 74.71 | 68.80 | 74.22 | 50.58 | 39.70 | 47.15 | 38.44 | 44.88 |
208
+ | Yi-6B-Chat-8bits(GPTQ) | 58.29 | 60.96 | 69.21 | 74.69 | 69.17 | 73.85 | 49.85 | 40.35 | 47.26 | 39.42 | 44.88 |
209
+ | Yi-6B-Chat-4bits(AWQ) | 56.78 | 59.89 | 67.70 | 73.29 | 67.53 | 72.29 | 50.29 | 37.74 | 43.62 | 35.71 | 38.36 |
210
+ | Yi-34B-Chat | **67.62** | 73.46 | **79.11** | **81.34** | 77.04 | 78.53 | 62.43 | 51.41 | **71.74** | **71.65** | **75.97** |
211
+ | Yi-34B-Chat-8bits(GPTQ) | 66.24 | **73.69** | 79.05 | 81.23 | 76.82 | 78.97 | 61.84 | **52.08** | 70.97 | 70.74 | 75.74 |
212
+ | Yi-34B-Chat-4bits(AWQ) | 65.77 | 72.42 | 78.21 | 80.50 | 75.71 | 77.27 | 61.84 | 48.30 | 69.39 | 70.51 | 74.00 |
213
+
214
+ We evaluated various benchmarks using both zero-shot and few-shot methods, except for TruthfulQA. Generally, the zero-shot approach is more common in chat models. Our evaluation strategy involves generating responses while following instructions explicitly or implicitly (such as using few-shot examples). We then isolate relevant answers from the generated text. Some models are not well-suited to produce output in the specific format required by instructions in few datasets, which leads to suboptimal results.
215
+
216
+ <strong>*</strong>: C-Eval results are evaluated on the validation datasets
217
+
218
+ ### Quantized Chat Model Performance
219
+
220
+ We also provide both 4-bit (AWQ) and 8-bit (GPTQ) quantized Yi chat models. Evaluation results on various benchmarks have shown that the quantized models have negligible losses. Additionally, they reduce the memory footprint size. After testing different configurations of prompts and generation lengths, we highly recommend following the guidelines in the memory footprint table below when selecting a device to run our models.
221
+
222
+ | | batch=1 | batch=4 | batch=16 | batch=32 |
223
+ | ----------------------- | ------- | ------- | -------- | -------- |
224
+ | Yi-34B-Chat | 65GiB | 68GiB | 76GiB | >80GiB |
225
+ | Yi-34B-Chat-8bits(GPTQ) | 35GiB | 37GiB | 46GiB | 58GiB |
226
+ | Yi-34B-Chat-4bits(AWQ) | 19GiB | 20GiB | 30GiB | 40GiB |
227
+ | Yi-6B-Chat | 12GiB | 13GiB | 15GiB | 18GiB |
228
+ | Yi-6B-Chat-8bits(GPTQ) | 7GiB | 8GiB | 10GiB | 14GiB |
229
+ | Yi-6B-Chat-4bits(AWQ) | 4GiB | 5GiB | 7GiB | 10GiB |
230
+
231
+ Note: All the numbers in the table represent the minimum recommended memory for running models of the corresponding size.
232
+
233
+ ### Limitations of Chat Model
234
+
235
+ The released chat model has undergone exclusive training using Supervised Fine-Tuning (SFT). Compared to other standard chat models, our model produces more diverse responses, making it suitable for various downstream tasks, such as creative scenarios. Furthermore, this diversity is expected to enhance the likelihood of generating higher quality responses, which will be advantageous for subsequent Reinforcement Learning (RL) training.
236
+
237
+ However, this higher diversity might amplify certain existing issues, including:
238
+
239
+ - **Hallucination**: This refers to the model generating factually incorrect or nonsensical information. With the model's responses being more varied, there's a higher chance of hallucination that are not based on accurate data or logical reasoning.
240
+ - **Non-determinism in re-generation**: When attempting to regenerate or sample responses, inconsistencies in the outcomes may occur. The increased diversity can lead to varying results even under similar input conditions.
241
+ - **Cumulative Error**: This occurs when errors in the model's responses compound over time. As the model generates more diverse responses, the likelihood of small inaccuracies building up into larger errors increases, especially in complex tasks like extended reasoning, mathematical problem-solving, etc.
242
+
243
+ To achieve more coherent and consistent responses, it is advisable to adjust generation configuration parameters such as`temperature`,`top_p`, or`top_k`. These adjustments can help in the balance between creativity and coherence in the model's outputs.
244
+
245
+
246
+
247
+ ## Usage
248
+
249
+ Feel free to [create an issue](https://github.com/01-ai/Yi/issues/new) if you
250
+ encounter any problem when using the **Yi** series models.
251
+
252
+ ### 1. Prepare development environment
253
+
254
+ #### 1.1 Docker
255
+ The best approach to try the **Yi** series models is through Docker with GPUs. We
256
+ provide the following docker images to help you get started.
257
+
258
+ - `registry.lingyiwanwu.com/ci/01-ai/yi:latest`
259
+ - `ghcr.io/01-ai/yi:latest`
260
+
261
+ Note that the `latest` tag always points to the latest code in the `main`
262
+ branch. To test a stable version, please replace it with a specific
263
+ [tag](https://github.com/01-ai/Yi/tags).
264
+
265
+ #### 1.2 Local development environment
266
+ We use [`conda-lock`](https://github.com/conda/conda-lock) to generate fully reproducible lock files for conda environments. You can refer to [conda-lock.yml](./conda-lock.yml) for the exact versions of the dependencies. Additionally, we utilize [`micromamba`](https://mamba.readthedocs.io/en/latest/user_guide/micromamba.html) for installing these dependencies.
267
+
268
+ To install the dependencies, please follow these steps:
269
+ 1. Install `micromamba` by following the instructions available [here](https://mamba.readthedocs.io/en/latest/installation/micromamba-installation.html).
270
+ 2. Execute `micromamba install -y -n yi -f conda-lock.yml` to create a conda environment named `yi` and install the necessary dependencies.
271
+
272
+ ### 2. Download the model (optional)
273
+
274
+ By default, the model weights and tokenizer will be downloaded from
275
+ [Hugging Face](https://huggingface.co/01-ai) automatically in the next step. You
276
+ can also download them manually from the following places:
277
+
278
+ - [ModelScope](https://www.modelscope.cn/organization/01ai/)
279
+ - [WiseModel](https://wisemodel.cn/organization/01.AI)
280
+
281
+ ### 3. Examples
282
+
283
+ #### 3.1 Use the chat model
284
+
285
+ ```python
286
+ from transformers import AutoModelForCausalLM, AutoTokenizer
287
+
288
+ model_path = '01-ai/Yi-34b-Chat'
289
+
290
+ tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
291
+
292
+ # Since transformers 4.35.0, the GPT-Q/AWQ model can be loaded using AutoModelForCausalLM.
293
+ model = AutoModelForCausalLM.from_pretrained(
294
+ model_path,
295
+ device_map="auto",
296
+ torch_dtype='auto'
297
+ ).eval()
298
+
299
+ # Prompt content: "hi"
300
+ messages = [
301
+ {"role": "user", "content": "hi"}
302
+ ]
303
+
304
+ input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
305
+ output_ids = model.generate(input_ids.to('cuda'))
306
+ response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
307
+
308
+ # Model response: "Hello! How can I assist you today?"
309
+ print(response)
310
+ ```
311
+
312
+
313
+ To construct the prompt template manually, you can refer the `chat_template` field in the `tokenizer_config.json` [file](https://huggingface.co/01-ai/Yi-34B-Chat/blob/main/tokenizer_config.json#L60).
314
+
315
+ ```
316
+ <|im_start|>system
317
+ {system_message}<|im_end|>
318
+ <|im_start|>user
319
+ {prompt}<|im_end|>
320
+ <|im_start|>assistant
321
+ ```
322
+
323
+ #### 3.2 Use the base model
324
+
325
+ ```bash
326
+ python demo/text_generation.py
327
+ ```
328
+
329
+ To reuse the downloaded models in the previous step, you can provide the extra
330
+ `--model` argument:
331
+
332
+ ```bash
333
+ python demo/text_generation.py --model /path/to/model
334
+ ```
335
+
336
+ Or if you'd like to get your hands dirty:
337
+
338
+ ```python
339
+ from transformers import AutoModelForCausalLM, AutoTokenizer
340
+
341
+ model = AutoModelForCausalLM.from_pretrained("01-ai/Yi-34B", device_map="auto", torch_dtype="auto")
342
+ tokenizer = AutoTokenizer.from_pretrained("01-ai/Yi-34B")
343
+ inputs = tokenizer("There's a place where time stands still. A place of breath taking wonder, but also", return_tensors="pt")
344
+ max_length = 256
345
+
346
+ outputs = model.generate(
347
+ inputs.input_ids.cuda(),
348
+ max_length=max_length,
349
+ eos_token_id=tokenizer.eos_token_id,
350
+ do_sample=True,
351
+ repetition_penalty=1.3,
352
+ no_repeat_ngram_size=5,
353
+ temperature=0.7,
354
+ top_k=40,
355
+ top_p=0.8,
356
+ )
357
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
358
+ ```
359
+
360
+ <details>
361
+
362
+ <summary>Output</summary>
363
+
364
+ **Prompt**: There's a place where time stands still. A place of breath taking wonder, but also
365
+
366
+ **Generation**: There's a place where time stands still. A place of breath taking wonder, but also of great danger. A place where the very air you breathe could kill you. A place where the only way to survive is to be prepared.
367
+ The place is called the Arctic.
368
+ The Arctic is a vast, frozen wilderness. It is a place of extremes. The temperatures can drop to -40 degrees Celsius. The winds can reach speeds of 100 kilometers per hour. The sun can shine for 24 hours a day, or not at all for weeks on end.
369
+ The Arctic is also a place of great beauty. The ice and snow are a pristine white. The sky is a deep blue. The sunsets are spectacular.
370
+ But the Arctic is also a place of great danger. The ice can be treacherous. The winds can be deadly. The sun can be blinding.
371
+ The Arctic is a place where the only way to survive is to be prepared.
372
+ The Arctic is a place of extremes. The temperatures can drop to -40 degrees Celsius. The winds can reach speeds of 100 kilometers per hour. The sun can shine for 24 hours a day, or not at all for weeks on end.
373
+ The Arctic is a place of great beauty. The ice and snow are a
374
+
375
+ </details>
376
+
377
+ For more advanced usage, please refer to the
378
+ [doc](https://github.com/01-ai/Yi/tree/main/demo).
379
+
380
+ #### 3.3 Finetuning from the base model:
381
+
382
+ ```bash
383
+ bash finetune/scripts/run_sft_Yi_6b.sh
384
+ ```
385
+
386
+ Once finished, you can compare the finetuned model and the base model with the following command:
387
+
388
+ ```bash
389
+ bash finetune/scripts/run_eval.sh
390
+ ```
391
+
392
+ For more advanced usage like fine-tuning based on your custom data, please refer
393
+ the [doc](https://github.com/01-ai/Yi/tree/main/finetune).
394
+
395
+ #### 3.4 Quantization
396
+
397
+ ##### GPT-Q
398
+ ```bash
399
+ python quantization/gptq/quant_autogptq.py \
400
+ --model /base_model \
401
+ --output_dir /quantized_model \
402
+ --trust_remote_code
403
+ ```
404
+
405
+ Once finished, you can then evaluate the resulting model as follows:
406
+
407
+ ```bash
408
+ python quantization/gptq/eval_quantized_model.py \
409
+ --model /quantized_model \
410
+ --trust_remote_code
411
+ ```
412
+
413
+ For a more detailed explanation, please read the [doc](https://github.com/01-ai/Yi/tree/main/quantization/gptq)
414
+
415
+ ##### AWQ
416
+ ```bash
417
+ python quantization/awq/quant_autoawq.py \
418
+ --model /base_model \
419
+ --output_dir /quantized_model \
420
+ --trust_remote_code
421
+ ```
422
+
423
+ Once finished, you can then evaluate the resulting model as follows:
424
+
425
+ ```bash
426
+ python quantization/awq/eval_quantized_model.py \
427
+ --model /quantized_model \
428
+ --trust_remote_code
429
+ ```
430
+
431
+ For more detailed explanation, please read the [doc](https://github.com/01-ai/Yi/tree/main/quantization/awq)
432
+
433
+ ## FAQ
434
+
435
+ 1. **What dataset was this trained with?**
436
+
437
+ The dataset we use contains Chinese & English only. We used approximately 3T
438
+ tokens. The detailed number and its construction will be described in the
439
+ upcoming technical report.
440
+
441
+ ## Disclaimer
442
+
443
+ We use data compliance checking algorithms during the training process, to
444
+ ensure the compliance of the trained model to the best of our ability. Due to
445
+ complex data and the diversity of language model usage scenarios, we cannot
446
+ guarantee that the model will generate correct, and reasonable output in all
447
+ scenarios. Please be aware that there is still a risk of the model producing
448
+ problematic outputs. We will not be responsible for any risks and issues
449
+ resulting from misuse, misguidance, illegal usage, and related misinformation,
450
+ as well as any associated data security concerns.
451
+
452
+ ## License
453
+
454
+ The source code in this repo is licensed under the [Apache 2.0
455
+ license](https://github.com/01-ai/Yi/blob/main/LICENSE). The Yi series models
456
+ are fully open for academic research and free commercial usage with permission
457
+ via applications. All usage must adhere to the [Model License
458
+ Agreement 2.0](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt).
459
+ To apply for the official commercial license, please contact us
460
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 4096,
13
+ "model_type": "llama",
14
+ "num_attention_heads": 32,
15
+ "num_hidden_layers": 32,
16
+ "num_key_value_heads": 4,
17
+ "pretraining_tp": 1,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_scaling": null,
20
+ "rope_theta": 5000000.0,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.35.0",
24
+ "use_cache": true,
25
+ "vocab_size": 64000
26
+ }
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 6,
3
+ "do_sample": true,
4
+ "eos_token_id": 7,
5
+ "pad_token_id": 0,
6
+ "temperature": 0.6,
7
+ "max_length": 4096,
8
+ "top_p": 0.8,
9
+ "transformers_version": "4.35.0"
10
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bc7f90ecddaa20d260f11465189d72ffb7b3907dc9fa2acf0b46244ae2edf8a
3
+ size 4932711424
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1abf84803fb5b2d88371508b35ac110243476c5b4bf0954a34232444b5f9016d
3
+ size 4976802816
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fffff0a2775222906785b875c6d662831cd6342dee3d9877e2b7732c7d2ba4d2
3
+ size 2212590568
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 12122071040
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|im_sep|>"
6
+ ],
7
+ "bos_token": {
8
+ "content": "<|startoftext|>",
9
+ "lstrip": false,
10
+ "normalized": true,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "eos_token": {
15
+ "content": "<|endoftext|>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "pad_token": {
22
+ "content": "<unk>",
23
+ "lstrip": false,
24
+ "normalized": true,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ },
28
+ "unk_token": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:386c49cf943d71aa110361135338c50e38beeff0a66593480421f37b319e1a39
3
+ size 1033105
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<|startoftext|>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<|endoftext|>",
23
+ "lstrip": false,
24
+ "normalized": true,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "6": {
30
+ "content": "<|im_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "7": {
38
+ "content": "<|im_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "8": {
46
+ "content": "<|im_sep|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ }
53
+ },
54
+ "additional_special_tokens": [
55
+ "<|im_start|>",
56
+ "<|im_end|>",
57
+ "<|im_sep|>"
58
+ ],
59
+ "bos_token": "<|startoftext|>",
60
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
61
+ "clean_up_tokenization_spaces": false,
62
+ "eos_token": "<|endoftext|>",
63
+ "legacy": true,
64
+ "model_max_length": 32768,
65
+ "pad_token": "<unk>",
66
+ "padding_side": "right",
67
+ "sp_model_kwargs": {},
68
+ "spaces_between_special_tokens": false,
69
+ "tokenizer_class": "LlamaTokenizer",
70
+ "unk_token": "<unk>",
71
+ "use_default_system_prompt": true
72
+ }