CheeLi03's picture
Upload tokenizer
753c69d verified
metadata
base_model: openai/whisper-base
datasets:
  - fleurs
language:
  - de
library_name: transformers
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Base German Punctuation 4k - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: de_de
          split: None
          args: 'config: de split: test'
        metrics:
          - type: wer
            value: 42.652697521196735
            name: Wer

Whisper Base German Punctuation 4k - Chee Li

This model is a fine-tuned version of openai/whisper-base on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6091
  • Wer: 42.6527

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0578 4.7619 1000 0.4862 36.8202
0.0052 9.5238 2000 0.5652 36.5610
0.0028 14.2857 3000 0.5972 41.4808
0.0023 19.0476 4000 0.6091 42.6527

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.3